skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pollock, Sara"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We analyze and test a simple-to-implement two-step iteration for the incompressible Navier-Stokes equations that consists of first applying the Picard iteration and then applying the Newton iteration to the Picard output. We prove that this composition of Picard and Newton converges quadratically, and our analysis (which covers both the unique solution and non-unique solution cases) also suggests that this solver has a larger convergence basin than usual Newton because of the improved stability properties of Picard-Newton over Newton. Numerical tests show that Picard-Newton converges more reliably for higher Reynolds numbers and worse initial conditions than Picard and Newton iterations. We also consider enhancing the Picard step with Anderson acceleration (AA), and find that the AAPicard-Newton iteration has even better convergence properties on several benchmark test problems. 
    more » « less
  2. We explore the possibility of simulating the grade-two fluid model in a geometry related to a contraction rheometer, and we provide details on several key aspects of the computation. We show how the results can be used to determine the viscosity ν from experimental data. We also explore the identifiability of the grade-two parameters α1 and α2 from experimental data. In particular, as the flow rate varies, force data appears to be nearly the same for certain distinct pairs of values α1 and α2; however, we determine a regime for α1 and α2 for which the parameters may be identifiable with a contraction rheometer. 
    more » « less
  3. The purpose of this paper is to develop a practical strategy to accelerate Newton’s method in the vicinity of singular points. We present an adaptive safeguarding scheme with a tunable parameter, which we call adaptive γ-safeguarding, that one can use in tandem with Anderson acceleration to improve the performance of Newton’s method when solving problems at or near singular points. The key features of adaptive γ-safeguarding are that it converges locally for singular problems, and it can detect nonsingular problems automatically, in which case the Newton-Anderson iterates are scaled towards a standard Newton step. The result is a flexible algorithm that performs well for singular and nonsingular problems, and can recover convergence from both standard Newton and Newton-Anderson with the right parameter choice. This leads to faster local convergence compared to both Newton’s method, and Newton-Anderson without safeguarding, with effectively no additional computational cost. We demonstrate three strategies one can use when implementing Newton-Anderson and γ-safeguarded Newton-Anderson to solve parameter-dependent problems near singular points. For our benchmark problems, we take two parameter-dependent incompressible flow systems: flow in a channel and Rayleigh-Benard convection. 
    more » « less
  4. In this article, we propose, analyze and demonstrate a dynamic momentum method to accelerate power and inverse power iterations with minimal computational overhead. The method can be applied to real diagonalizable matrices, is provably convergent with acceleration in the symmetric case, and does not require a priori spectral knowledge. We review and extend background results on previously developed static momentum accelerations for the power iteration through the connection between the momentum accelerated iteration and the standard power iteration applied to an augmented matrix. We show that the augmented matrix is defective for the optimal parameter choice. We then present our dynamic method which updates the momentum parameter at each iteration based on the Rayleigh quotient and two previous residuals. We present convergence and stability theory for the method by considering a power‐like method consisting of multiplying an initial vector by a sequence of augmented matrices. We demonstrate the developed method on a number of benchmark problems, and see that it outperforms both the power iteration and often the static momentum acceleration with optimal parameter choice. Finally, we present and demonstrate an explicit extension of the algorithm to inverse power iterations. 
    more » « less
  5. In this paper we develop convergence and acceleration theory for Anderson acceleration applied to Newton’s method for nonlinear systems in which the Jacobian is singular at a solution. For these problems, the standard Newton algorithm converges linearly in a region about the solution; and, it has been previously observed that Anderson acceleration can substantially improve convergence without additional a priori knowledge, and with little additional computation cost. We present an analysis of the Newton-Anderson algorithm in this context, and introduce a novel and theoretically supported safeguarding strategy. The convergence results are demonstrated with the Chandrasekhar H-equation and a variety of benchmark examples. 
    more » « less
  6. We develop an algorithm for solving the general grade-two model of non-Newtonian fluids which for the first time includes inflow boundary conditions. The algorithm also allows for both of the rheological parameters to be chosen independently. The proposed algorithm couples a Stokes equation for the velocity with a transport equation for an auxiliary vector-valued function. We prove that this model is well posed using the algorithm that we show converges geometrically in suitable Sobolev spaces for sufficiently small data. We demonstrate computationally that this algorithm can be successfully discretized and that it can converge to solutions for the model parameters of order one. We include in the appendix a description of appropriate boundary conditions for the auxiliary variable in standard geometries. 
    more » « less