skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Posa, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The hybrid nature of multi-contact robotic systems, due to making and breaking contact with the environment, creates significant challenges for high-quality control. Existing model-based methods typically rely on either good prior knowledge of the multi-contact model or require significant offline model tuning effort, thus resulting in low adaptability and robustness. In this paper, we propose a realtime adaptive multi-contact model predictive control framework, which enables online adaption of the hybrid multi-contact model and continuous improvement of the control performance for contact-rich tasks. This framework includes an adaption module, which continuously learns a residual of the hybrid model to minimize the gap between the prior model and reality, and a real-time multi-contact MPC controller. We demonstrated the effectiveness of the framework in synthetic examples, and applied it on hardware to solve contact-rich manipulation tasks, where a robot uses its end-effector to roll different unknown objects on a table to track given paths. The hardware experiments show that with a rough prior model, the multi-contact MPC controller adapts itself on-the-fly with an adaption rate around 20 Hz and successfully manipulates previously unknown objects with non-smooth surface geometries. Accompanying media can be found at: https://sites.google.com/view/adaptive-contact-implicit-mpc/home 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  2. Robotic manipulation can greatly benefit from the data efficiency, robustness, and predictability of model-based methods if robots can quickly generate models of novel objects they encounter. This is especially difficult when effects like complex joint friction lack clear first-principles models and are usually ignored by physics simulators. Further, numerically-stiff contact dynamics can make common model-building approaches struggle. We propose a method to simultaneously learn contact and continuous dynamics of a novel, possibly multi-link object by observing its motion through contact-rich trajectories. We formulate a system identification process with a loss that infers unmeasured contact forces, penalizing their violation of physical constraints and laws of motion given current model parameters. Our loss is unlike prediction-based losses used in differentiable simulation. Using a new dataset of real articulated object trajectories and an existing cube toss dataset, our method outperforms differentiable simulation and end-to-end alternatives with more data efficiency. See our project page for code, datasets, and media: https://sites.google.com/view/continuous-contact-nets/home 
    more » « less
    Free, publicly-accessible full text available November 6, 2024
  3. Robotic manipulation and locomotion often entail nearly-simultaneous collisions—such as heel and toe strikes during a foot step—with outcomes that are extremely sensitive to the order in which impacts occur. Robotic simulators and state estimation commonly lack the fidelity and accuracy to predict this ordering, and instead pick one with a heuristic. This discrepancy degrades performance when model-based controllers and policies learned in simulation are placed on a real robot. We reconcile this issue with a set-valued rigid-body model which generates a broad set of outcomes to simultaneous frictional impacts with any impact ordering. We first extend Routh’s impact model to multiple impacts by reformulating it as a differential inclusion (DI), and show that any solution will resolve all impacts in finite time. By considering time as a state, we embed this model into another DI which captures the continuous-time evolution of rigid-body dynamics, and guarantee existence of solutions. We finally cast simulation of simultaneous impacts as a linear complementarity problem (LCP), and develop an algorithm for tight approximation of the post-impact velocity set with probabilistic guarantees. We demonstrate our approach on several examples drawn from manipulation and legged locomotion, and compare the predictions to other models of rigid and compliant collisions.

     
    more » « less
  4. Tan, Jie ; Toussaint, Marc ; Darvish, Kourosh (Ed.)
    Contacts play a critical role in most manipulation tasks. Robots today mainly use proximal touch/force sensors to sense contacts, but the information they provide must be calibrated and is inherently local, with practical applications relying either on extensive surface coverage or restrictive assumptions to resolve ambiguities. We propose a vision-based extrinsic contact localization task: with only a single RGB-D camera view of a robot workspace, identify when and where an object held by the robot contacts the rest of the environment. We show that careful task-attuned design is critical for a neural network trained in simulation to discover solutions that transfer well to a real robot. Our final approach im2contact demonstrates the promise of versatile general-purpose contact perception from vision alone, performing well for localizing various contact types (point, line, or planar; sticking, sliding, or rolling; single or multiple), and even under occlusions in its camera view. Video results can be found at: https://sites.google.com/view/im2contact/home 
    more » « less
    Free, publicly-accessible full text available November 6, 2024
  5. Firoozi, Roya ; Mehr, Negar ; Yel, Esen ; Antonova, Rika ; Bohg, Jeannette ; Schwager, Mac ; Kochenderfer, Mykel (Ed.)
    This paper investigates the learning, or system identification, of a class of piecewise-affine dynamical systems known as linear complementarity systems (LCSs). We propose a violation-based loss which enables efficient learning of the LCS parameterization, without prior knowledge of the hybrid mode boundaries, using gradient-based methods. The proposed violation-based loss incorporates both dynamics prediction loss and a novel complementarity - violation loss. We show several properties attained by this loss formulation, including its differentiability, the efficient computation of first- and second-order derivatives, and its relationship to the traditional prediction loss, which strictly enforces complementarity. We apply this violation-based loss formulation to learn LCSs with tens of thousands of (potentially stiff) hybrid modes. The results demonstrate a state-of-the-art ability to identify piecewise-affine dynamics, outperforming methods which must differentiate through non-smooth linear complementarity problems. 
    more » « less