Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 17, 2025
-
In the single-machinenon-clairvoyantscheduling problem, the goal is to minimize the total completion time of jobs whose processing times areunknowna priori. We revisit this well-studied problem and consider the question of how to effectively use (possibly erroneous) predictions of the processing times. We study this question from ground zero by first asking what constitutes a good prediction; we then propose a new measure to gauge prediction quality and design scheduling algorithms with strong guarantees under this measure. Our approach to derive a prediction error measure based on natural desiderata could find applications for other online problems.more » « less
-
We study variants of the online linear optimization (OLO) problem with bandit feedback, where the algorithm has access to external information about the unknown cost vector. Our motivation is the recent body of work on using such “hints” towards improving regret bounds for OLO problems in the full-information setting. Unlike in the full-information OLO setting, with bandit feedback, we first show that one cannot improve the standard regret bounds of O(\sqrt{T}) by using hints, even if they are always well-correlated with the cost vector. In contrast, if the algorithm is empowered to issue queries and if all the responses are correct, then we show O(\log(T)) regret is achievable. We then show how to make this result more robust — when some of the query responses can be adversarial — by using a little feedback on the quality of the responses.more » « less
-
We consider the online linear optimization problem, where at every step the algorithm plays a point x_t in the unit ball, and suffers loss for some cost vector c_t that is then revealed to the algorithm. Recent work showed that if an algorithm receives a "hint" h_t that has non-trivial correlation with c_t before it plays x_t, then it can achieve a logarithmic regret guarantee, improving on the classical sqrt(T) bound. In this work, we study the question of whether an algorithm really requires a hint at every time step. Somewhat surprisingly, we show that an algorithm can obtain logarithmic regret with just O(sqrt(T)) hints under a natural query model. We give two applications of our result, to the well-studied setting of optimistic regret bounds and to the problem of online learning with abstention.more » « less
-
We consider the online linear optimization problem with movement costs, a variant of online learning in which the learner must not only respond to cost vectors c_t with points x_t in order to maintain low regret, but is also penalized for movement by an additional cost. Classically, simple algorithms that obtain the optimal sqrt(T) regret already are very stable and do not incur a significant movement cost. However, recent work has shown that when the learning algorithm is provided with weak "hint" vectors that have a positive correlation with the costs, the regret can be significantly improved to log(T). In this work, we study the stability of such algorithms, and provide matching upper and lower bounds showing that incorporating movement costs results in intricate tradeoffs logarithmic and sqrt(T) regret.more » « less