skip to main content

Search for: All records

Creators/Authors contains: "Rinaldo, Alessandro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2023
  2. Free, publicly-accessible full text available April 1, 2023
  3. We derive conditions under which the reconstruction of a target space is topologically correct via the Čech complex or the Vietoris-Rips complex obtained from possibly noisy point cloud data. We provide two novel theoretical results. First, we describe sufficient conditions under which any non-empty intersection of finitely many Euclidean balls intersected with a positive reach set is contractible, so that the Nerve theorem applies for the restricted Čech complex. Second, we demonstrate the homotopy equivalence of a positive μ-reach set and its offsets. Applying these results to the restricted Čech complex and using the interleaving relations with the Čech complex (or the Vietoris-Rips complex), we formulate conditions guaranteeing that the target space is homotopy equivalent to the Čech complex (or the Vietoris-Rips complex), in terms of the μ-reach. Our results sharpen existing results.
  4. In the 1-dimensional multiple changepoint detection problem, we derive a new fast error rate for the fused lasso estimator, under the assumption that the mean vector has a sparse number of changepoints. This rate is seen to be suboptimal (compared to the minimax rate) by only a factor of loglogn. Our proof technique is centered around a novel construction that we call a lower interpolant. We extend our results to misspecified models and exponential family distributions. We also describe the implications of our error analysis for the approximate screening of changepoints.