skip to main content

Search for: All records

Creators/Authors contains: "Rouvimov, Sergei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Colloidal growth modes reliant on the replication of the crystalline character of a preexisting seed through homoepitaxial or heteroepitaxial depositions have enriched both the architectural diversity and functionality of noble metal nanostructures. Equivalent syntheses, when practiced on seeds formed on a crystalline substrate, must reconcile with the fact that the substrate enters the syntheses as a chemically distinct bulk-scale component that has the potential to impose its own epitaxial influences. Herein, we provide an understanding of the formation of epitaxial interfaces within the context of a hybrid growth mode that sees substrate-based seeds fabricated at high temperatures in the vapor phase on single-crystal oxide substrates and then exposed to a low-temperature liquid-phase synthesis yielding highly faceted nanostructures with a single-crystal character. Using two representative syntheses in which gold nanoplates and silver–platinum core–shell structures are formed, it is shown that the hybrid system behaves unconventionally in terms of epitaxy in that the substrate imposes an epitaxial relationship on the seed but remains relatively inactive as the metal seed imposes an epitaxial relationship on the growing nanostructure. With epitaxy transduced from substrate to seed to nanostructure through what is, in essence, a relay system, all of the nanostructures formed in a givenmore »synthesis end up with the same crystallographic orientation relative to the underlying substrate. This work advances the use of substrate-induced epitaxy as a synthetic control in the fabrication of on-chip devices reliant on the collective response of identically aligned nanostructures.« less
  2. With arms radiating from a central core, gold nanostars represent a unique and fascinating class of nanomaterials from which extraordinary plasmonic properties are derived. Despite their relevance to sensing applications, methods for fabricating homogeneous populations of nanostars on large-area planar surfaces in truly periodic arrays is lacking. Herein, the fabrication of nanostar arrays is demonstrated through the formation of hexagonal patterns of near-hemispherical gold seeds and their subsequent exposure to a liquid-state chemical environment that is conducive to colloidal nanostar formation. Three different colloidal nanostar protocols were targeted where HEPES, DMF, and ascorbic acid represent a key reagent in their respective redox chemistries. Only the DMF-driven synthesis proved readily adaptable to the substrate-based platform but nanostar-like structures emerged from the other protocols when synthetic controls such as reaction kinetics, the addition of Ag + ions, and pH adjustments were applied. Because the nanostars were derived from near-hemispherical seeds, they acquired a unique geometry that resembles a conventional nanostar that has been truncated near its midsection. Simulations of plasmonic properties of this geometry reveal that such structures can exhibit maximum near-field intensities that are as much as seven-times greater than the standard nanostar geometry, a finding that is corroborated by surface-enhancedmore »Raman scattering (SERS) measurements showing large enhancement factors. The study adds nanostars to the library of nanostructure geometries that are amenable to large-area periodic arrays and provides a potential pathway for the nanofabrication of SERS substrates with even greater enhancements.« less