skip to main content

Search for: All records

Creators/Authors contains: "Scarlatos, Alexander"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 24, 2023
  2. Educational process data, i.e., logs of detailed student activities in computerized or online learning platforms, has the potential to offer deep insights into how students learn. One can use process data for many downstream tasks such as learning outcome prediction and automatically delivering personalized intervention. In this paper, we propose a framework for learning representations of educational process data that is applicable across different learning scenarios. Our framework consists of a pre-training step that uses BERTtype objectives to learn representations from sequential process data and a fine-tuning step that further adjusts these representations on downstream prediction tasks. We apply our framework to the 2019 nation’s report card data mining competition dataset that consists of student problem-solving process data and detail the specific models we use in this scenario. We conduct both quantitative and qualitative experiments to show that our framework results in process data representations that are both predictive and informative.
    Free, publicly-accessible full text available July 1, 2023