skip to main content


Search for: All records

Creators/Authors contains: "Shan, Liren"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We show that the RandomCoordinateCut algorithm gives the optimal competitive ratio for explainable k-medians in l1. The problem of explainable k-medians was introduced by Dasgupta, Frost, Moshkovitz, and Rashtchian in 2020. Several groups of authors independently proposed a simple polynomial-time randomized algorithm for the problem and showed that this algorithm is O(log k loglog k) competitive. We provide a tight analysis of the algorithm and prove that its competitive ratio is upper bounded by 2ln k +2. This bound matches the Omega(log k) lower bound by Dasgupta et al (2020). 
    more » « less
    Free, publicly-accessible full text available December 10, 2024
  2. We prove a new generalization of the higher-order Cheeger inequality for partitioning with buffers. Consider a graph G = (V, E). The buffered expansion of a set S ⊆ V with a buffer B ⊆ V∖S is the edge expansion of S after removing all the edges from set S to its buffer B. An ε-buffered k-partitioning is a partitioning of a graph into disjoint components P_i and buffers B_i, in which the size of buffer B_i for P_i is small relative to the size of P_i: |B_i| ≤ ε|P_i|. The buffered expansion of a buffered partition is the maximum of buffered expansions of the k sets P_i with buffers B_i. Let h^{k,ε}_G be the buffered expansion of the optimal ε-buffered k-partitioning, then for every δ>0, h^{k,ε}_G ≤ O(1)⋅(log k) ⋅λ_{⌊(1+δ)k⌋} / ε, where λ_{⌊(1+δ)k⌋} is the ⌊(1+δ)k⌋-th smallest eigenvalue of the normalized Laplacian of G. Our inequality is constructive and avoids the ``square-root loss'' that is present in the standard Cheeger inequalities (even for k=2). We also provide a complementary lower bound, and a novel generalization to the setting with arbitrary vertex weights and edge costs. Moreover our result implies and generalizes the standard higher-order Cheeger inequalities and another recent Cheeger-type inequality by Kwok, Lau, and Lee (2017) involving robust vertex expansion. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  3. We prove a new generalization of the higher-order Cheeger inequality for partitioning with buffers. Consider a graph G=(V,E). The buffered expansion of a set S⊆V with a buffer B⊆V∖S is the edge expansion of S after removing all the edges from set S to its buffer B. An ε-buffered k-partitioning is a partitioning of a graph into disjoint components Pi and buffers Bi, in which the size of buffer Bi for Pi is small relative to the size of Pi: |Bi|≤ε|Pi|. The buffered expansion of a buffered partition is the maximum of buffered expansions of the k sets Pi with buffers Bi. Let hk,εG be the buffered expansion of the optimal ε-buffered k-partitioning, then for every δ>0, hk,εG≤Oδ(1)⋅(logkε)⋅λ⌊(1+δ)k⌋, where λ⌊(1+δ)k⌋ is the ⌊(1+δ)k⌋-th smallest eigenvalue of the normalized Laplacian of G. Our inequality is constructive and avoids the ``square-root loss'' that is present in the standard Cheeger inequalities (even for k=2). We also provide a complementary lower bound, and a novel generalization to the setting with arbitrary vertex weights and edge costs. Moreover our result implies and generalizes the standard higher-order Cheeger inequalities and another recent Cheeger-type inequality by Kwok, Lau, and Lee (2017) involving robust vertex expansion. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  4. Free, publicly-accessible full text available January 1, 2025
  5. Gørtz, Inge Li ; Farach-Colton, Martin ; Puglisi, Simon J ; Herman, Grzegorz (Ed.)
    We consider variants of the classic Multiway Cut problem. Multiway Cut asks to partition a graph G into k parts so as to separate k given terminals. Recently, Chandrasekaran and Wang (ESA 2021) introduced l_p-norm Multiway Cut, a generalization of the problem, in which the goal is to minimize the l_p norm of the edge boundaries of k parts. We provide an O(log^{1/2} n log^{1/2 + 1/p} k) approximation algorithm for this problem, improving upon the approximation guarantee of O(log^{3/2} n log^{1/2} k) due to Chandrasekaran and Wang. We also introduce and study Norm Multiway Cut, a further generalization of Multiway Cut. We assume that we are given access to an oracle, which answers certain queries about the norm. We present an O(log^{1/2} n log^{7/2} k) approximation algorithm with a weaker oracle and an O(log^{1/2} n log^{5/2} k) approximation algorithm with a stronger oracle. Additionally, we show that without any oracle access, there is no n^{1/4-ε} approximation algorithm for every ε > 0 assuming the Hypergraph Dense-vs-Random Conjecture. 
    more » « less
  6. We provide a new bi-criteria O(log2k) competitive algorithm for explainable k-means clustering. Explainable k-means was recently introduced by Dasgupta, Frost, Moshkovitz, and Rashtchian (ICML 2020). It is described by an easy to interpret and understand (threshold) decision tree or diagram. The cost of the explainable k-means clustering equals to the sum of costs of its clusters; and the cost of each cluster equals the sum of squared distances from the points in the cluster to the center of that cluster. The best non bi-criteria algorithm for explainable clustering O(k) competitive, and this bound is tight. Our randomized bi-criteria algorithm constructs a threshold decision tree that partitions the data set into (1+δ)k clusters (where δ∈(0,1) is a parameter of the algorithm). The cost of this clustering is at most O(1/δ⋅log2k) times the cost of the optimal unconstrained k-means clustering. We show that this bound is almost optimal. 
    more » « less
  7. null (Ed.)
    We consider the problem of explainable k-medians and k-means introduced by Dasgupta, Frost, Moshkovitz, and Rashtchian (ICML 2020). In this problem, our goal is to find a threshold decision tree that partitions data into k clusters and minimizes the k-medians or k-means objective. The obtained clustering is easy to interpret because every decision node of a threshold tree splits data based on a single feature into two groups. We propose a new algorithm for this problem which is O(log k) competitive with k-medians with ℓ1 norm and O(k) competitive with k-means. This is an improvement over the previous guarantees of O(k) and O(k^2) by Dasgupta et al (2020). We also provide a new algorithm which is O(log^{3}{2}k) competitive for k-medians with ℓ2 norm. Our first algorithm is near-optimal: Dasgupta et al (2020) showed a lower bound of Ω(log k) for k-medians; in this work, we prove a lower bound of Ω(k) for k-means. We also provide a lower bound of Ω(log k) for k-medians with ℓ2 norm. 
    more » « less
  8. In this paper, we study k-means++ and k-means++ parallel, the two most popular algorithms for the classic k-means clustering problem. We provide novel analyses and show improved approximation and bi-criteria approximation guarantees for k-means++ and k-means++ parallel. Our results give a better theoretical justification for why these algorithms perform extremely well in practice. We also propose a new variant of k-means++ parallel algorithm (Exponential Race k-means++) that has the same approximation guarantees as k-means++. 
    more » « less