skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Silwal, Sandeep"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The online list update problem is defined as follows: we are given a list of items and the cost to access any particular item is its position from the start of the list. A sequence of item accesses come online, and our goal is to dynamically reorder the list so that the aggregate access cost is small. We study the stochastic version of the problem where the items are accessed i.i.d. from an unknown distribution p. The study of the stochastic version goes back at least 60 years to McCabe. In this paper, we first consider the simple online algorithm which swaps an accessed item with the item right before it, unless it is at the very front. This algorithm is known as the Transposition rule. Wetheoretically analyze the stationary behavior of Transposition and prove that its performance is within 1 + o(1) factor of the optimal offline algorithm for access sequences sampled from heavy-tailed distributions, proving a conjecture of Rivest from 1976. While the stationary behavior of the Transposition rule is theoretically optimal in the aforemen tioned i.i.d setting, it can catastrophically fail under adversarial access sequences where only the last and second to last items are repeatedly accessed. A desirable outcome would be a policy that performs well under both circumstances. To achieve this, we use reinforcement learning to design an adaptive policy that performs well for both the i.i.d. setting and the above-mentioned adversarial access. Unsurprisingly, the learned policy appears to be an interpolation between Move-to-Front and Transposition with its behavior closer to Move-to-Front for adversarial access sequences and closer to Transposition for sequences sampled from heavy tailed distributions suggesting that the policy is adaptive and capable of responding to patterns in the access sequence. 
    more » « less
    Free, publicly-accessible full text available February 24, 2026
  2. The online list update problem is defined as follows: we are given a list of items and the cost to access any particular item is its position from the start of the list. A sequence of item accesses come online, and our goal is to dynamically reorder the list so that the aggregate access cost is small. We study the stochastic version of the problem where the items are accessed i.i.d. from an unknown distribution p. The study of the stochastic version goes back at least 60 years to McCabe. In this paper, we first consider the simple online algorithm which swaps an accessed item with the item right before it, unless it is at the very front. This algorithm is known as the Transposition rule. We theoretically analyze the stationary behavior of Transposition and prove that its performance is within 1+o(1) factor of the optimal offline algorithm for access sequences sampled from heavy-tailed distributions, proving a conjecture of Rivest from 1976. While the stationary behavior of the Transposition rule is theoretically optimal in the aforementioned i.i.d setting, it can catastrophically fail under adversarial access sequences where only the last and second to last items are repeatedly accessed. A desirable outcome would be a policy that performs well under both circumstances. To achieve this, we use reinforcement learning to design an adaptive policy that performs well for both the i.i.d. setting and the above-mentioned adversarial access. Unsurprisingly, the learned policy appears to be an interpolation between Move-to-Front and Transposition with its behavior closer to Move-to-Front for adversarial access sequences and closer to Transposition for sequences sampled from heavy tailed distributions suggesting that the policy is adaptive and capable of responding to patterns in the access sequence. 
    more » « less
    Free, publicly-accessible full text available February 24, 2026
  3. We consider the problem of hypothesis testing for discrete distributions. In the standard model, where we have sample access to an underlying distribution p, extensive research has established optimal bounds for uniformity testing, identity testing (goodness of fit), and closeness testing (equivalence or two-sample testing). We explore these problems in a setting where a predicted data distribution, possibly derived from historical data or predictive machine learning models, is available. We demonstrate that such a predictor can indeed reduce the number of samples required for all three property testing tasks. The reduction in sample complexity depends directly on the predictor’s quality, measured by its total variation distance from p. A key advantage of our algorithms is their adaptability to the precision of the prediction. Specifically, our algorithms can self-adjust their sample complexity based on the accuracy of the available prediction, operating without any prior knowledge of the estimation’s accuracy (i.e. they are consistent). Additionally, we never use more samples than the standard approaches require, even if the predictions provide no meaningful information (i.e. they are also robust). We provide lower bounds to indicate that the improvements in sample complexity achieved by our algorithms are information-theoretically optimal. Furthermore, experimental results show that the performance of our algorithms on real data significantly exceeds our worst-case guarantees for sample complexity, demonstrating the practicality of our approach. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025
  4. Free, publicly-accessible full text available December 1, 2025
  5. Estimating frequencies of elements appearing in a data stream is a key task in large-scale data analysis. Popular sketching approaches to this problem (e.g., CountMin and CountSketch) come with worst-case guarantees that probabilistically bound the error of the estimated frequencies for any possible input. The work of Hsu et al.~(2019) introduced the idea of using machine learning to tailor sketching algorithms to the specific data distribution they are being run on. In particular, their learning-augmented frequency estimation algorithm uses a learned heavy-hitter oracle which predicts which elements will appear many times in the stream. We give a novel algorithm, which in some parameter regimes, already theoretically outperforms the learning based algorithm of Hsu et al. without the use of any predictions. Augmenting our algorithm with heavy-hitter predictions further reduces the error and improves upon the state of the art. Empirically, our algorithms achieve superior performance in all experiments compared to prior approaches. 
    more » « less
  6. We study dynamic algorithms robust to adaptive input generated from sources with bounded capabilities, such as sparsity or limited interaction. For example, we consider robust linear algebraic algorithms when the updates to the input are sparse but given by an adversary with access to a query oracle. We also study robust algorithms in the standard centralized setting, where an adversary queries an algorithm in an adaptive manner, but the number of interactions between the adversary and the algorithm is bounded. We first recall a unified framework of [HKM+20, BKM+22, ACSS23] which is roughly a quadratic improvement over the na ̈ıve implementation, and only incurs a logarithmic overhead in query time. Although the general framework has diverse applications in machine learning and data science, such as adaptive distance estimation, kernel density estimation, linear regression, range queries, and point queries and serves as a preliminary benchmark, we demonstrate even better algorithmic improvements for (1) reducing the pre-processing time for adaptive distance estimation and (2) permitting an unlimited number of adaptive queries for kernel density estimation. Finally, we complement our theoretical results with additional empirical evaluations. 
    more » « less
  7. Kernel matrices, as well as weighted graphs represented by them, are ubiquitous objects in machine learning, statistics and other related fields. The main drawback of using kernel methods (learning and inference using kernel matrices) is efficiency – given n input points, most kernel-based algorithms need to materialize the full n × n kernel matrix before performing any subsequent computation, thus incurring Ω(n^2) runtime. Breaking this quadratic barrier for various problems has therefore, been a subject of extensive research efforts. We break the quadratic barrier and obtain subquadratic time algorithms for several fundamental linear-algebraic and graph processing primitives, including approximating the top eigenvalue and eigenvector, spectral sparsification, solving lin- ear systems, local clustering, low-rank approximation, arboricity estimation and counting weighted triangles. We build on the recently developed Kernel Density Estimation framework, which (after preprocessing in time subquadratic in n) can return estimates of row/column sums of the kernel matrix. In particular, we de- velop efficient reductions from weighted vertex and weighted edge sampling on kernel graphs, simulating random walks on kernel graphs, and importance sampling on matrices to Kernel Density Estimation and show that we can generate samples from these distributions in sublinear (in the support of the distribution) time. Our reductions are the central ingredient in each of our applications and we believe they may be of independent interest. We empirically demonstrate the efficacy of our algorithms on low-rank approximation (LRA) and spectral sparsi- fication, where we observe a 9x decrease in the number of kernel evaluations over baselines for LRA and a 41x reduction in the graph size for spectral sparsification. 
    more » « less
  8. We study statistical/computational tradeoffs for the following density estimation problem: given kdistributionsv1,...,vk overadiscretedomain of size n, and sampling access to a distribution p, identify vi that is “close” to p. Our main result is the first data structure that, given a sublinear (in n) number of samples from p, identifies vi in time sublinear in k. We also give an improved version of the algorithm of (Acharya et al., 2018) that reports vi in time linear in k. The experimental evaluation of the latter algorithm shows that it achieves a significant reduction in the number of operations needed to achieve a given accuracy compared to prior work. 
    more » « less