skip to main content

Search for: All records

Creators/Authors contains: "Sullivan, Dean"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The increasing complexity of System-on-Chip (SoC) designs and the rise of third-party vendors in the semiconductor industry have led to unprecedented security concerns. Traditional formal methods struggle to address software-exploited hardware bugs, and existing solutions for hardware-software co-verification often fall short. This paper presents Microscope, a novel framework for inferring software instruction patterns that can trigger hardware vulnerabilities in SoC designs. Microscope enhances the Structural Causal Model (SCM) with hardware features, creating a scalable Hardware Structural Causal Model (HW-SCM). A domain-specific language (DSL) in SMT-LIB represents the HW-SCM and predefined security properties, with incremental SMT solving deducing possible instructions. Microscope identifies causality to determine whether a hardware threat could result from any software events, providing a valuable resource for patching hardware bugs and generating test input. Extensive experimentation demonstrates Microscope's capability to infer the causality of a wide range of vulnerabilities and bugs located in SoC-level benchmarks. 
    more » « less
    Free, publicly-accessible full text available April 1, 2025