skip to main content

Search for: All records

Creators/Authors contains: "Sundaram, Ravi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The classical Erdös-Gallai theorem kicked off the study ofgraph realizability by characterizing degree sequences. We extend this line of research by investigating realizability of directed acyclic graphs (DAGs)given both a local constraint via degree sequences and a global constraint via a sequence of reachability values (number of nodes reachable from a given node). We show that, without degree constraints, DAG reachability realization is solvable in linear time, whereas it is strongly NP-complete given upper bounds on in-degree or out-degree. After defining a suitable notion of bicriteria approximation based on consistency, we give two approximation algorithms achieving O(logn)-reachability consistency and O(logn)-degreemore »consistency; the first, randomized, uses LP (Linear Program) rounding, while the second, deterministic, employs ak-setpacking heuristic. We end with two conjectures that we hope motivate further study of realizability with reachability constraints.« less
  2. We initiate the algorithmic study of retracting a graph into a cycle in the graph, which seeks a mapping of the graph vertices to the cycle vertices so as to minimize the maximum stretch of any edge, subject to the constraint that the restriction of the mapping to the cycle is the identity map. This problem has its roots in the rich theory of retraction of topological spaces, and has strong ties to well-studied metric embedding problems such as minimum bandwidth and0-extension. Our first result is anO(min{k,√n})-approximation for retracting any graph on n nodes to a cycle with k nodes.more »We also show a surprising connection to Sperner’s Lemma that rules out the possibility of improving this result using certain natural convex relaxations of the problem. Nevertheless, if the problem is restricted to planar graphs, we show that we can overcome these integrality gaps by giving an optimal combinatorial algorithm, which is the technical centerpiece of the paper. Building on our planar graph algorithm, we also obtain a constant-factor approximation algorithm for retraction of points in the Euclidean plane to a uniform cycle.« less