skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Taub"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this study, we evaluate the impact of a game-based supplemental fraction curriculum on student engagement, fraction knowledge, and STEM interest in inclusive elementary mathematics classrooms. Utilizing a robust experimental design, the research explores how a game-based interventions can augment traditional fraction instruction and promote STEM interest among students, including those with disabilities. The curriculum, grounded in Scheme Theory and Learning Trajectories, significantly improved students’ fraction understanding and STEM interest. These findings highlight the potential of integrating game-based learning into mathematics education to address foundational STEM concepts and advocate for further research to explore scalability and broader applicability. The results of the study underscore the potential of innovative educational strategies to enhance learning outcomes and fostering interest in STEM careers among diverse student populations. 
    more » « less
    Free, publicly-accessible full text available January 20, 2026
  2. The current study measures the extent to which students’ self-regulated learning tactics and learning outcomes change as the result of a deliberate, data-driven improvement in the learning design of mastery-based online learning modules. In the original design, students were required to attempt the assessment once before being allowed to access the learning material. The improved design gave students the choice to skip the first attempt and access the learning material directly. Student learning tactics were measured using a multi-level clustering and process mining algorithm, and a quasi-experiment design was implemented to remove or reduce differences in extraneous factors, including content being covered, time of implementation, and naturally occurring fluctuations in student learning tactics. The analysis suggests that most students who chose to skip the first attempt were effectively self-regulating their learning and were thus successful in learning from the instructional materials. Students who would have failed the first attempt were much more likely to skip it than those who would have passed the first attempt. The new design also resulted in a small improvement in learning outcome and median learning time. The study demonstrates the creation of a closed loop between learning design and learning analytics: first, using learning analytics to inform improvements to the learning design, then assessing the effectiveness and impact of the improvements. 
    more » « less
    Free, publicly-accessible full text available August 18, 2025
  3. Free, publicly-accessible full text available July 7, 2025
  4. The Success and Retention of Students using Multiple-Attempt Testing in Fundamental Engineering Courses: Dynamics and Thermodynamics First name Last name1, First name Last name 1, First name Last name 2, First name Last name 2, First name Last name 3, and First name Last name 1 1Department One 2Department two 3Department Three University Abstract The notion behind Multiple-Attempt Testing continues to be investigated for its benefits in terms of students’ overall success and their retention in fundamental engineering courses. Two engineering courses were delivered in mixed-mode in Spring 2023 (post-COVID): Dynamics and Thermodynamics, whose results were compared to the same courses given in the same semester, four years earlier, delivered in mixed-mode in Spring 2019 (pre-COVID). All four courses were large classes ranging from 167 students for Spring 2023 in Dynamics to 267 students in Thermodynamics for the same Spring 2023 semester. For both courses, there were three tests during the semester. In Spring 2019, students were given a five-day window to conduct their tests in the testing center (TC). Facilitated by the Learning Management System (LMS), the grades were instantly uploaded into CANVAS. Once the test closed, students were allowed to see their work with a teaching-assistant to learn from mistakes and claim some partial credit where possible. However, in Spring 2023, for both courses, students were given three tests during the semester with three attempts each, as well as a make-up final cumulative examination, also with three attempts, for those who wanted to improve their grades. No partial credit was given in any attempt of any test or the final examination. Each attempt was open for two days and the students were allowed to see their tests after each attempt, learn from mistakes, and prepare better for the next attempt. The effectiveness of this testing-interwoven-learning method lies in the fact that students are comfortable and less anxious to do their tests knowing they have other chances, can learn from their mistakes and focus their attention on their weaknesses, enhance their knowledge, and do better in the next attempt. With this self-paced method students learn a lot on their own given the amount of videos provided them. The study shows a substantial decrease in the failure rate, 65% and the overall DWF decreased by more than 40% in both courses. This suggests students aspired to do well in every attempt, or even if they failed all three tests, they would still have a final examination that could save them, which reduced the overall DWF. A survey was also conducted, revealing more than 70% of students preferred this method of testing and learning in future courses. 
    more » « less
    Free, publicly-accessible full text available June 23, 2025
  5. Microstructure control of in situ metal matrix nanocomposites (MMNCs) poses a barrier to their large-scale production. Here, we interrogate in unprecedented detail the formation mechanisms, morphologies, and microstructures of an in situ Al/TiC MMNC processed via salt flux reaction. Through synchrotron-based X-ray nanotomography (TXM) and scanning and transmission electron microscopy, we visualize in over five orders-of-magnitude of length-scale the TiC nanoparticles, Al_3Ti intermetallics, and their co-locations. 3D reconstructions from TXM revealed a surprising variety of Al_3Ti morphologies, including an orthogonal plate structure. By combining our experimental results with phase-field simulations, we demonstrate that this growth form originates from the intermetallic nucleating epitaxially on a TiC particle which is larger than a critical size at a given undercooling. Yet TiC particles that are too small to nucleate Al_3Ti can also impact the growth of the intermetallic, by splitting the intermetallic plates during solidification. These insights on the divalent roles of the nanoparticles offer general guidelines for the synthesis and processing of MMNCs. 
    more » « less
    Free, publicly-accessible full text available September 1, 2025
  6. Curricula enhanced through the use of digital games can benefit students in their interest and learning of Science, Technology, Engineering, and Mathematics (STEM) concepts. Elementary teachers’ likelihood to embrace and use game-enhanced instructional approaches with integrity in mathematics has not been extensively studied. In this study, a sequential mixed methods design was employed to investigate the feasibility of a game-enhanced supplemental fraction curriculum in elementary classrooms, including how teachers implemented the curriculum, their perspectives and experiences as they used it, and their students’ resulting fraction learning and STEM interest. Teachers implemented the supplemental curriculum with varying adherence but had common experiences throughout their implementation. Teachers expressed experiences related to (1) time, (2) curriculum being too different, and (3) too difficult for students. Their strategies to handle those phenomena varied. Teachers that demonstrated higher adherence to the game-enhanced supplemental fraction curriculum had students that displayed higher STEM interest and fraction learning. While this study helps to better understand elementary teachers’ experiences with game-enhanced mathematics curricula, implications for further research and program development are also discussed. 
    more » « less