skip to main content


Search for: All records

Creators/Authors contains: "Thirumalai, Kaustubh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Robinson, Marci (Ed.)
    Free, publicly-accessible full text available February 13, 2025
  2. The observation of extremely low radiocarbon content / old radiocarbon ages (>4000 years old) in the intermediate-depth ocean during the last ice age draws attention to our incomplete understanding of ocean carbon cycling. For example, glacial-interglacial seawater 14C anomalies near the Gulf of California have been explained by both the advection from a 14C-depleted abyssal source and local geologic carbon flux. To provide insight to this the origin of the seawater 14C anomalies, we have produced several new records of glacial-interglacial intermediate water (i.e., 14C, δ11B, δ18O, and δ13C) in waters that are “upstream” and “downstream” of the Gulf of California. These observations plus geochemical modeling allow us to: (1) Answer whether the old seawater 14C ages are advected or produced locally; (2) Identify the approximate chemical make-up of this carbon; and (3) Consider the role of known sedimentary processes in this carbon flux to the ocean. (Note that several sites have age model controls based on terrestrial plant 14C ages, providing more confidence in our results.) Our new measurements and modeling indicate that the well-established >4000-year-old seawater 14C anomalies observed near known seafloor volcanism in the Gulf of California are not present “upstream,” indicating that this carbon flux results from a “local” geologic carbon. Furthermore, based on our new benthic foraminifera δ11B measurements, this local carbon Blux does not appear to affect seawater pH. Finally, we suggest several potential geologic carbon source(s) that could explain the anomalously old seawater 14C ages, the relatively unremarkable changes in seawater δ13C, and the essentially negligible change in seawater pH. 
    more » « less
    Free, publicly-accessible full text available December 11, 2024
  3. The Indian Ocean exhibits multiple modes of interannual climate variability, whose future behaviour is uncertain. Recent analysis of glacial climates has uncovered an additional El Niño-like equatorial mode in the Indian Ocean, which could also emerge in future warm states. Here we explore changes in the tropical Indian Ocean simulated by the Paleoclimate Model Intercomparison Project (PMIP4). These simulations are performed by an ensemble of models contributing to the Coupled Model Intercomparison Project 6 and over four coordinated experiments: three past periods – the mid-Holocene (6000 years ago), the Last Glacial Maximum (21 000 years ago), the last interglacial (127 000 years ago) – and an idealized forcing scenario to examine the impact of greenhouse forcing. The two interglacial experiments are used to characterize the role of orbital variations in the seasonal cycle, whilst the other pair focus on responses to large changes in global temperature. The Indian Ocean Basin Mode (IOBM) is damped in both the mid-Holocene and last interglacial, with the amount related to the damping of the El Niño–Southern Oscillation in the Pacific. No coherent changes in the strength of the IOBM are seen with global temperature changes; neither are changes in the Indian Ocean Dipole (IOD) nor the Niño-like mode. Under orbital forcing, the IOD robustly weakens during the mid-Holocene experiment, with only minor reductions in amplitude during the last interglacial. Orbital changes do impact the SST pattern of the Indian Ocean Dipole, with the cold pole reaching up to the Equator and extending along it. Induced changes in the regional seasonality are hypothesized to be an important control on changes in the Indian Ocean variability. 
    more » « less
  4. Abstract

    Several modes of tropical sea‐surface temperature (SST) variability operate on year‐to‐year (interannual) timescales and profoundly shape seasonal precipitation patterns across adjacent landmasses. Substantial uncertainty remains in addressing how SST variability will become altered under sustained greenhouse warming. Paleoceanographic estimates of changes in variability under past climatic states have emerged as a powerful method to clarify the sensitivity of interannual variability to climate forcing. Several approaches have been developed to investigate interannual SST variability within and beyond the observational period, primarily using marine calcifiers that afford subannual‐resolution sampling plans. Amongst these approaches, geochemical variations in coral skeletons are particularly attractive for their near‐monthly, continuous sampling resolution, and capacity to focus on SST anomalies after removing an annual cycle calculated over many years (represented as geochemical oscillations). Here we briefly review the paleoceanographic pursuit of interannual variability. We additionally highlight recent research documented by Ong et al., (2022,https://doi.org/10.1029/2022PA004483) who demonstrate the utility of Sr/Ca variations in capturing SST variability using a difficult‐to‐sample meandroid coral species,Colpophyllia natans, which is widespread across the Caribbean region and can be used to generate records spanning multiple centuries.

     
    more » « less
  5. Abstract

    Large uncertainties exist in climate model projections of the Asian summer monsoon (ASM). The El Niño‐Southern Oscillation (ENSO) is an important modulator of the ASM, but the ENSO‐ASM teleconnection is not stationary. Furthermore, teleconnections between ENSO and the East Asian versus South Asian subcomponents of the ASM exhibit distinct characteristics. Therefore, understanding the variability of the ENSO‐ASM teleconnection is critical for anticipating future variations in ASM intensity. To this end, we here use paleoclimate records to extend temporal coverage beyond the instrumental era by millennia. Recently, data assimilation techniques have been applied for the last millennium, which facilitates physically consistent, globally gridded climate reconstructions informed by paleoclimate observations. We use these novel data assimilation products to investigate variations in the ENSO‐ASM relationship over the last 1,000 years. We find that correlations between ENSO and ASM indices are mostly negative in the last millennium, suggesting that strong ASM years are often associated with La Niña events. During periods of weak correlations between ENSO and the East Asian summer monsoon, we observe an El Niño‐like sea surface temperature (SST) pattern in the Pacific. Additionally, SST patterns associated with periods of weak correlations between ENSO and South Asian summer monsoon rainfall are not consistent among data assimilation products. This underscores the importance of developing more precipitation‐sensitive paleoclimate proxies in the Indian subcontinental realm over the last millennium. Our study serves as a baseline for future appraisals of paleoclimate assimilation products and an example of informing our understanding of decadal‐scale ENSO‐ASM teleconnection variability using paleoclimate data sets.

     
    more » « less
  6. Abstract

    Observations show that the teleconnection between the El Niño‐Southern Oscillation (ENSO) and the Asian summer monsoon (ASM) is non‐stationary. However, the underlying mechanisms are poorly understood due to inadequate availability of reliable, long‐term observations. This study uses two state‐of‐the‐art data assimilation‐based reconstructions of last millennium climate to examine changes in the ENSO–ASM teleconnection; we investigate how modes of (multi‐)decadal climate variability (namely, the Pacific Decadal Oscillation, PDO, and the Atlantic Multidecadal Oscillation, AMO) modulate the ENSO–ASM relationship. Our analyses reveal that the PDO exerts a more pronounced impact on ASM variability than the AMO. By comparing different linear regression models, we find that including the PDO in addition to ENSO cycles can improve prediction of the ASM, especially for the Indian summer monsoon. In particular, dry (wet) anomalies caused by El Niño (La Niña) over India become enhanced during the positive (negative) PDO phases due to a compounding effect. However, composite differences in the ENSO–ASM relationship between positive and negative phases of the PDO and AMO are not statistically significant. A significant influence of the PDO/AMO on the ENSO–ASM relationship occurred only over a limited period within the last millennium. By leveraging the long‐term paleoclimate reconstructions, we document and interrogate the non‐stationary nature of the PDO and AMO in modulating the ENSO–ASM relationship.

     
    more » « less
  7. Abstract Peninsular India hosts the initial rain-down of the Indian Summer Monsoon (ISM) after which winds travel further east inwards into Asia. Stalagmite oxygen isotope composition from this region, such as those from Belum Cave, preserve the vital signals of the past ISM variability. These archives experience a single wet season with a single dominant moisture source annually. Here we present high-resolution δ 18 O, δ 13 C and trace element (Mg/Ca, Sr/Ca, Ba/Ca, Mn/Ca) time series from a Belum Cave stalagmite spanning glacial MIS-6 (from ~ 183 to ~ 175 kyr) and interglacial substages MIS-5c-5a (~ 104 kyr to ~ 82 kyr). With most paleomonsoon reconstructions reporting coherent evolution of northern hemisphere summer insolation and ISM variability on orbital timescale, we focus on understanding the mechanisms behind millennial scale variability. Finding that the two are decoupled over millennial timescales, we address the role of the Southern Hemisphere processes in modulating monsoon strength as a part of the Hadley circulation. We identify several strong and weak episodes of ISM intensity during 104–82 kyr. Some of the weak episodes correspond to warming in the southern hemisphere associated with weak cross-equatorial winds. We show that during the MIS-5 substages, ISM strength gradually declined with millennial scale variability linked to Southern Hemisphere temperature changes which in turn modulate the strength of the Mascarene High. 
    more » « less
  8. Climate models and coral data provide insight into the response of the El Niño–Southern Oscillation to external forcing. 
    more » « less
  9. null (Ed.)