Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present 3D hydrodynamical simulations of core convection with a stably stratified envelope of a 25M⊙star in the early phase of the main sequence. We use the explicit gas-dynamics codePPMstar, which tracks two fluids and includes radiation pressure and radiative diffusion. Multiple series of simulations with different luminosities and radiative thermal conductivities are presented. The entrainment rate at the convective boundary, internal gravity waves in and above the boundary region, and the approach to dynamical equilibrium shortly after a few convective turnovers are investigated. We perform very long simulations on 8963grids accelerated by luminosity boost factors of 1000, 3162 and 10,000. In these simulations, the growing penetrative convection reduces the initially unrealistically large entrainment. This reduction is enabled by a spatial separation that develops between the entropy gradient and the composition gradient. The convective boundary moves outward much more slowly at the end of these simulations. Finally, we present a 1D method to predict the extent and character of penetrative convection beyond the Schwarzschild boundary. The 1D model is based on a spherically averaged reduced entropy equation that takes the turbulent dissipation as input from the 3D hydrodynamic simulation and takes buoyancy and all other energy sources and sinks into account. This 1D method is intended to be ultimately deployed in 1D stellar evolution calculations and is based on the properties of penetrative convection in our simulations carried forward through the local thermal timescale.more » « less
-
ABSTRACT Recent photometric observations of massive stars have identified a low-frequency power excess which appears as stochastic low-frequency variability in light-curve observations. We present the oscillation properties of high-resolution hydrodynamic simulations of a $$25\,\,{\rm{M}_\odot }$$ star performed with the PPMstar code. The model star has a convective core mass of $$\approx 12\,\,{\rm{M}_\odot }$$ and approximately half of the envelope simulated. From this simulation, we extract light curves from several directions, average them over each hemisphere, and process them as if they were real photometric observations. We show how core convection excites waves with a similar frequency as the convective time-scale in addition to significant power across a forest of low and high angular degree l modes. We find that the coherence of these modes is relatively low as a result of their stochastic excitation by core convection, with lifetimes of the order of 10s of days. Thanks to the still significant power at higher l and this relatively low coherence, we find that integrating over a hemisphere produces a power spectrum that still contains measurable power up to the Brunt–Väisälä frequency. These power spectra extracted from the stable envelope are qualitatively similar to observations, with the same order of magnitude yet lower characteristic frequency. This work further shows the potential of long-duration, high-resolution hydrodynamic simulations for connecting asteroseismic observations to the structure and dynamics of core convection and the convective boundary.more » « less
-
ABSTRACT We performed 3D hydrodynamic simulations of the inner $$\approx 50{{\ \rm per\ cent}}$$ radial extent of a $$25\,\,\mathrm{\mathrm{M}_\odot }$$ star in the early phase of the main sequence and investigate core convection and internal gravity waves in the core-envelope boundary region. Simulations for different grid resolutions and driving luminosities establish scaling relations to constrain models of mixing for 1D applications. As in previous works, the turbulent mass entrainment rate extrapolated to nominal heating is unrealistically high ($$1.58\times 10^{-4}\,\,\mathrm{\mathrm{M}_\odot \, {\mathrm{yr}}^{-1}}$$), which is discussed in terms of the non-equilibrium response of the simulations to the initial stratification. We measure quantitatively the effect of mixing due to internal gravity waves excited by core convection interacting with the boundary in our simulations. The wave power spectral density as a function of frequency and wavelength agrees well with the GYRE eigenmode predictions based on the 1D spherically averaged radial profile. A diffusion coefficient profile that reproduces the spherically averaged abundance distribution evolution is determined for each simulation. Through a combination of eigenmode analysis and scaling relations it is shown that in the N2-peak region, mixing is due to internal gravity waves and follows the scaling relation DIGW-hydro ∝ L4/3 over a $$\gtrapprox 2\,\,\mathrm{\mathrm{dex}}$$ range of heating factors. Different extrapolations of the mixing efficiency down to nominal heating are discussed. If internal gravity wave mixing is due to thermally enhanced shear mixing, an upper limit is $$D_\mathrm{IGW}\lessapprox 2$$ to $$3\times 10^{4}\,\,\mathrm{cm^2\, s^{-1}}$$ at nominal heating in the N2-peak region above the convective core.more » « less
-
Humans can learn complex functional relationships between variables from small amounts of data. In doing so, they draw on prior expectations about the form of these relationships. In three experiments, we show that people learn to adjust these expectations through experience, learning about the likely forms of the functions they will encounter. Previous work has used Gaussian processes—a statistical framework that extends Bayesian nonparametric approaches to regression—to model human function learning. We build on this work, modeling the process of learning to learn functions as a form of hierarchical Bayesian inference about the Gaussian process hyperparameters.more » « less
-
ABSTRACT We present the first 3D hydrodynamics simulations of the excitation and propagation of internal gravity waves (IGWs) in the radiative interiors of low-mass stars on the red giant branch (RGB). We use the ppmstar explicit gas dynamics code to simulate a portion of the convective envelope and all the radiative zone down to the hydrogen-burning shell of a $$1.2\, {\rm M}_{\odot }$$ upper RGB star. We perform simulations for different grid resolutions (7683, 15363, and 28803), a range of driving luminosities, and two different stratifications (corresponding to the bump luminosity and the tip of the RGB). Our RGB tip simulations can be directly performed at the nominal luminosity, circumventing the need for extrapolations to lower luminosities. A rich, continuous spectrum of IGWs is observed, with a significant amount of total power contained at high wavenumbers. By following the time evolution of a passive dye in the stable layers, we find that IGW mixing in our simulations is weaker than predicted by a simple analytical prescription based on shear mixing and not efficient enough to explain the missing RGB extra mixing. However, we may be underestimating the efficiency of IGW mixing given that our simulations include a limited portion of the convective envelope. Quadrupling its radial extent compared to our fiducial set-up increases convective velocities by up to a factor 2 and IGW velocities by up to a factor 4. We also report the formation of a $$\sim 0.2\, H_P$$ penetration zone and evidence that IGWs are excited by plumes that overshoot into the stable layers.more » « less
-
Abstract Reference anatomies of the brain (‘templates’) and corresponding atlases are the foundation for reporting standardized neuroimaging results. Currently, there is no registry of templates and atlases; therefore, the redistribution of these resources occurs either bundled within existing software or in ad hoc ways such as downloads from institutional sites and general-purpose data repositories. We introduce TemplateFlow as a publicly available framework for human and non-human brain models. The framework combines an open database with software for access, management, and vetting, allowing scientists to share their resources under FAIR—findable, accessible, interoperable, and reusable—principles. TemplateFlow enables multifaceted insights into brains across species, and supports multiverse analyses testing whether results generalize across standard references, scales, and in the long term, species.more » « less
-
Abstract The 1RXS J034231.8+121622 system consists of an M dwarf primary and a directly imaged low-mass stellar companion. We use high-resolution spectroscopic data from Keck/KPIC to estimate the objects' atmospheric parameters and radial velocities (RVs). Using PHOENIX stellar models, we find that the primary has a temperature of 3460 ± 50 K and a metallicity of 0.16 ± 0.04, while the secondary has a temperature of 2510 ± 50 K and a metallicity of . Recent work suggests this system is associated with the Hyades, giving it an older age than previous estimates. Both metallicities agree with current Hyades [Fe/H] measurements (0.11–0.21). Using stellar evolutionary models, we obtain significantly higher masses for the objects, 0.30 ± 0.15M⊙and 0.08 ± 0.01M⊙(84 ± 11MJup), respectively. Using the RVs and a new astrometry point from Keck/NIRC2, we find that the system is likely an edge-on, moderately eccentric ( ) configuration. We also estimate the C/O ratio of both objects using custom grid models, obtaining 0.42 ± 0.10 (primary) and 0.55 ± 0.10 (companion). From these results, we confirm that this system most likely went through a binary star formation process in the Hyades. The significant changes in this system's parameters since its discovery highlight the importance of high-resolution spectroscopy for both orbital and atmospheric characterization of directly imaged companions.more » « less
-
Kasneci, Enkelejda (Ed.)Species vary widely in the conspicuousness of their eye morphology and this could influence gaze perception. Eyes with conspicuous morphology can enhance gaze perception while eyes with camouflaged morphology may hinder gaze perception. While evidence suggests that conspicuous eye morphology enhances gaze perception, little is known about how environmental conditions affect this interaction. Thus, we investigated whether environmental light conditions affect gaze perception. Human subjects ( Homo sapiens ) were instructed to find direct-gaze faces within arrays of averted-gaze faces or to find averted-gaze faces within arrays of directed-gaze faces. The faces were displayed under conditions simulating nighttime or daytime conditions. Furthermore, the faces had naturally-colored sclera (white) or modified sclera (same color as the iris). Participants were fastest and most accurate in detecting faces during the daytime and nighttime conditions when the sclera were naturally-colored. Participants were worst at detecting faces with modified sclera during the nighttime conditions. These results suggest that eyes with conspicuous morphology enhance gaze perception during both daytime and nighttime conditions.more » « less