skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Tian, Shanquan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The security and performance of FPGA-based accelerators play vital roles in today’s cloud services. In addition to supporting convenient access to high-end FPGAs, cloud vendors and third-party developers now provide numerous FPGA accelerators for machine learning models. However, the security of accelerators developed for state-of-the-art Cloud FPGA environments has not been fully explored, since most remote accelerator attacks have been prototyped on local FPGA boards in lab settings, rather than in Cloud FPGA environments. To address existing research gaps, this work analyzes three existing machine learning accelerators developed in Xilinx Vitis to assess the potential threats of power attacks on accelerators in Amazon Web Services (AWS) F1 Cloud FPGA platforms, in a multi-tenant setting. The experiments show that malicious co-tenants in a multi-tenant environment can instantiate voltage sensing circuits as register-transfer level (RTL) kernels within the Vitis design environment to spy on co-tenant modules. A methodology for launching a practical remote power attack on Cloud FPGAs is also presented, which uses an enhanced time-to-digital (TDC) based voltage sensor and auto-triggered mechanism. The TDC is used to capture power signatures, which are then used to identify power consumption spikes and observe activity patterns involving the FPGA shell, DRAM on the FPGA board, or the other co-tenant victim’s accelerators. Voltage change patterns related to shell use and accelerators are then used to create an auto-triggered attack that can automatically detect when to capture voltage traces without the need for a hard-wired synchronization signal between victim and attacker. To address the novel threats presented in this work, this paper also discusses defenses that could be leveraged to secure multi-tenant Cloud FPGAs from power-based attacks. 
    more » « less
  2. The availability of FPGAs in cloud data centers offers rapid, on-demand access to reconfigurable hardware compute resources that users can adapt to their own needs. However, the low-level access to the FPGA hardware and associated resources such as the PCIe bus, SSD drives, or DRAM modules also opens up threats of malicious attackers uploading designs that are able to infer information about other users or about the cloud infrastructure itself. In particular, this work presents a new, fast PCIe-contention-based channel that is able to transmit data between FPGA-accelerated virtual machines by modulating the PCIe bus usage. This channel further works with different operating systems, and achieves bandwidths reaching 20 kbps with 99% accuracy. This is the first cross-FPGA covert channel demonstrated on commercial clouds, and has a bandwidth which is over 2000 × larger than prior voltage- or temperature-based cross-board attacks. This paper further demonstrates that the PCIe receivers are able to not just receive covert transmissions, but can also perform fine-grained monitoring of the PCIe bus, including detecting when co-located VMs are initialized, even prior to their associated FPGAs being used. Moreover, the proposed mechanism can be used to infer the activities of other users, or even slow down the programming of the co-located FPGAs as well as other data transfers between the host and the FPGA. Beyond leaking information across different virtual machines, the ability to monitor the PCIe bandwidth over hours or days can be used to estimate the data center utilization and map the behavior of the other users. The paper also introduces further novel threats in FPGA-accelerated instances, including contention due to network traffic, contention due to shared NVMe SSDs, as well as thermal monitoring to identify FPGA co-location using the DRAM modules attached to the FPGA boards. This is the first work to demonstrate that it is possible to break the separation of privilege in FPGA-accelerated cloud environments, and highlights that defenses for public clouds using FPGAs need to consider PCIe, SSD, and DRAM resources as part of the attack surface that should be protected. 
    more » « less
  3. null (Ed.)
    Public cloud infrastructures allow for easy, on-demand access to FPGA resources. However, the low-level, direct access to the FPGA hardware exposes the infrastructure providers to new types of attacks. Prior work has shown that it is possible to uniquely identify the underlying hardware by creating fingerprints of the different FPGA instances that users rent from a cloud provider, but such work was not able to actually map the cloud FPGA infrastructure itself. Meanwhile, this paper demonstrates that it is possible to reverse-engineer the co-location of FPGA boards inside a cloud FPGA server using PCIe contention. Specifically, this work deduces the Non-Uniform Memory Access (NUMA) locality of FPGA boards within a server by analyzing their mutual PCIe contention during simultaneous use of the PCIe bus. In addition, experiments conducted in data centers located in several geographic regions and repeated at different times are used to calculate the probability that cloud providers allocate FPGA boards co-located in the same server to a user. This paper thus shows that it is possible to map cloud FPGA infrastructures, and learn how FPGA instances are physically co-located within a server. Consequently, this paper also highlights the importance of mitigating these novel avenues for reverse-engineering and mapping of cloud FPGA setups, as they can reveal insights about the cloud infrastructure itself, or assist other single- and multi-tenant attacks. 
    more » « less
  4. null (Ed.)
    Architectural details of machine learning models are crucial pieces of intellectual property in many applications. Revealing the structure or types of layers in a model can result in a leak of confidential or proprietary information. This issue becomes especially concerning when the machine learning models are executed on accelerators in multi-tenant FPGAs where attackers can easily co-locate sensing circuitry next to the victim's machine learning accelerator. To evaluate such threats, we present the first remote power attack that can extract details of machine learning models executed on an off-the-shelf domain-specific instruction set architecture (ISA) based neural network accelerator implemented in an FPGA. By leveraging a time-to-digital converter (TDC), an attacker can deduce the composition of instruction groups executing on the victim accelerator, and recover parameters of General Matrix Multiplication (GEMM) instructions within a group, all without requiring physical access to the FPGA. With this information, an attacker can then reverse-engineer the structure and layers of machine learning models executing on the accelerator, leading to potential theft of proprietary information. 
    more » « less
  5. null (Ed.)
    To lower cost and increase the utilization of Cloud Field-Programmable Gate Arrays (FPGAs), researchers have recently been exploring the concept of multi-tenant FPGAs, where multiple independent users simultaneously share the same remote FPGA. Despite its benefits, multi-tenancy opens up the possibility of malicious users co-locating on the same FPGA as a victim user, and extracting sensitive information. This issue becomes especially serious when the user is running a machine learning algorithm that is processing sensitive or private information. To demonstrate the dangers, this paper presents a remote, power-based side-channel attack on a deep neural network accelerator running in a variety of Xilinx FPGAs and also on Cloud FPGAs using Amazon Web Services (AWS) F1 instances. This work in particular shows how to remotely obtain voltage estimates as a deep neural network inference circuit executes, and how the information can be used to recover the inputs to the neural network. The attack is demonstrated with a binarized convolutional neural network used to recognize handwriting images from the MNIST handwritten digit database. With the use of precise time-to-digital converters for remote voltage estimation, the MNIST inputs can be successfully recovered with a maximum normalized cross-correlation of 79% between the input image and the recovered image on local FPGA boards and 72% on AWS F1 instances. The attack requires no physical access nor modifications to the FPGA hardware. 
    more » « less
  6. null (Ed.)
    Multi-tenant FPGAs have recently been proposed, where multiple independent users simultaneously share a remote FPGA. Despite its benefits for cost and utilization, multi-tenancy opens up the possibility of malicious users extracting sensitive information from co-located victim users. To demonstrate the dangers, this paper presents a remote, power-based side-channel attack on a binarized neural network (BNN) accelerator. This work shows how to remotely obtain voltage estimates as the BNN circuit executes, and how the information can be used to recover the inputs to the BNN. The attack is demonstrated with a BNN used to recognize handwriting images from the MNIST dataset. With the use of precise time-to-digital converters (TDCs) for remote voltage estimation, the MNIST inputs can be successfully recovered with a maximum normalized cross-correlation of 75% between the input image and the recovered image. 
    more » « less
  7. null (Ed.)
    Physical Unclonable Functions (PUFs) and True Random Number Generators (TRNGs) are common primitives that can increase the security of user logic on FPGAs. They are typically constructed using Ring Oscillators (ROs). However, PUF and TRNG primitives are not currently available on Cloud FPGAs as some commercial Cloud FPGA providers prohibit deploying ROs implemented using Lookup Tables (LUTs). To aid in bringing RO-based PUFs and TRNGs to commercial Cloud FPGAs, this work implements and evaluates PUFs and TRNGs built using ROs that incorporate latches and flip-flops. The primitives are tested on Amazon's commercial F1 Cloud FPGAs. The designs are the first constructive uses of ROs in Cloud FPGAs and are available under an open-source license. 
    more » « less
  8. This paper presents a set of efficient and parameterized hardware accelerators that target post-quantum lattice-based cryptographic schemes, including a versatile cSHAKE core, a binary-search CDT-based Gaussian sampler, and a pipelined NTT-based polynomial multiplier, among others. Unlike much of prior work, the accelerators are fully open-sourced, are designed to be constant-time, and can be parameterized at compile-time to support different parameters without the need for re-writing the hardware implementation. These flexible, publicly-available accelerators are leveraged to demonstrate the first hardware-software co-design using RISC-V of the post-quantum lattice-based signature scheme qTESLA with provably secure parameters. In particular, this work demonstrates that the NIST’s Round 2 level 1 and level 3 qTESLA variants achieve over a 40-100x speedup for key generation, about a 10x speedup for signing, and about a 16x speedup for verification, compared to the baseline RISC-V software-only implementation. For instance, this corresponds to execution in 7.7, 34.4, and 7.8 milliseconds for key generation, signing, and verification, respectively, for qTESLA’s level 1 parameter set on an Artix-7 FPGA, demonstrating the feasibility of the scheme for embedded applications. 
    more » « less