Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 12, 2025
-
We study the problem of capacity modification in the many-to-one stable matching of workers and firms. Our goal is to systematically study how the set of stable matchings changes when some seats are added to or removed from the firms. We make three main contributions: First, we examine whether firms and workers can improve or worsen upon changing the capacities under worker-proposing and firm-proposing deferred acceptance algorithms. Second, we study the computational problem of adding or removing seats to either match a fixed worker-firm pair in some stable matching or make a fixed matching stable with respect to the modified problem. We develop polynomial-time algorithms for these problems when only the overall change in the firms’ capacities is restricted, and show NP-hardness when there are additional constraints for individual firms. Lastly, we compare capacity modification with the classical model of preference manipulation by firms and identify scenarios under which one mode of manipulation outperforms the other. We find that a threshold on a given firm’s capacity, which we call its peak, crucially determines the effectiveness of different manipulation actions.more » « lessFree, publicly-accessible full text available May 6, 2025
-
Free, publicly-accessible full text available May 6, 2025
-
We study fair allocation of indivisible goods and chores among agents with lexicographic preferences---a subclass of additive valuations. In sharp contrast to the goods-only setting, we show that an allocation satisfying envy-freeness up to any item (EFX) could fail to exist for a mixture of objective goods and chores. To our knowledge, this negative result provides the first counterexample for EFX over (any subdomain of) additive valuations. To complement this non-existence result, we identify a class of instances with (possibly subjective) mixed items where an EFX and Pareto optimal allocation always exists and can be efficiently computed. When the fairness requirement is relaxed to maximin share (MMS), we show positive existence and computation for any mixed instance. More broadly, our work examines the existence and computation of fair and efficient allocations both for mixed items as well as chores-only instances, and highlights the additional difficulty of these problems vis-à-vis their goods-only counterparts.more » « less
-
The classical house allocation problem involves assigning n houses (or items) to n agents according to their preferences. A key criteria in such problems is satisfying some fairness constraints such as envy-freeness. We consider a generalization of this problem wherein the agents are placed along the vertices of a graph (corresponding to a social network), and each agent can only experience envy towards its neighbors. Our goal is to minimize the aggregate envy among the agents as a natural fairness objective, i.e., the sum of the envy value over all edges in a social graph. When agents have identical and evenly-spaced valuations, our problem reduces to the well-studied problem of linear arrangements. For identical valuations with possibly uneven spacing, we show a number of deep and surprising ways in which our setting is a departure from this classical problem. More broadly, we contribute several structural and computational results for various classes of graphs, including NP-hardness results for disjoint unions of paths, cycles, stars, or cliques; we also obtain fixed-parameter tractable (and, in some cases, polynomial-time) algorithms for paths, cycles, stars, cliques, and their disjoint unions. Additionally, a conceptual contribution of our work is the formulation of a structural property for disconnected graphs that we call separability which results in efficient parameterized algorithms for finding optimal allocations.more » « less
-
Strategic behavior in two-sided matching markets has been traditionally studied in a one-sided manipulation setting where the agent who misreports is also the intended beneficiary. Our work investigates two-sided manipulation of the deferred acceptance algorithm where the misreporting agent and the manipulator (or beneficiary) are on different sides. Specifically, we generalize the recently proposed accomplice manipulation model (where a man misreports on behalf of a woman) along two complementary dimensions: (a) the two for one model, with a pair of misreporting agents (man and woman) and a single beneficiary (the misreporting woman), and (b) the one for all model, with one misreporting agent (man) and a coalition of beneficiaries (all women). Our main contribution is to develop polynomial-time algorithms for finding an optimal manipulation in both settings. We obtain these results despite the fact that an optimal one for all strategy fails to be inconspicuous, while it is unclear whether an optimal two for one strategy satisfies the inconspicuousness property. We also study the conditions under which stability of the resulting matching is preserved. Experimentally, we show that two-sided manipulations are more frequently available and offer better quality matches than their one-sided counterparts.