skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vullikanti, Anil"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The main focus of this article is radius-based (supplier) clustering in the two-stage stochastic setting with recourse, where the inherent stochasticity of the model comes in the form of a budget constraint. In addition to the standard (homogeneous) setting where all clients must be within a distance\(R\)of the nearest facility, we provide results for the more general problem where the radius demands may beinhomogeneous(i.e., different for each client). We also explore a number of variants where additional constraints are imposed on the first-stage decisions, specifically matroid and multi-knapsack constraints, and provide results for these settings. We derive results for the most general distributional setting, where there is only black-box access to the underlying distribution. To accomplish this, we first develop algorithms for thepolynomial scenariossetting; we then employ a novelscenario-discardingvariant of the standardSample Average Approximationmethod, which crucially exploits properties of the restricted-case algorithms. We note that the scenario-discarding modification to the SAA method is necessary to optimize over the radius. 
    more » « less
    Free, publicly-accessible full text available March 31, 2026
  2. One of the most common problems studied in the context of differential privacy for graph data is counting the number of non-induced embeddings of a subgraph in a given graph. These counts have very high global sensitivity. Therefore, adding noise based on powerful alternative techniques, such as smooth sensitivity and higher-order local sensitivity have been shown to give significantly better accuracy. However, all these alternatives to global sensitivity become computationally very expensive, and to date efficient polynomial time algorithms are known only for few selected subgraphs, such as triangles, k-triangles, and k-stars. In this paper, we show that good approximations to these sensitivity metrics can be still used to get private algorithms. Using this approach, we much faster algorithms for privately counting the number of triangles in real-world social networks, which can be easily parallelized. We also give a private polynomial time algorithm for counting any constant size subgraph using less noise than the global sensitivity; we show this can be improved significantly for counting paths in special classes of graphs. 
    more » « less
    Free, publicly-accessible full text available May 30, 2025
  3. Free, publicly-accessible full text available May 2, 2025
  4. Free, publicly-accessible full text available May 2, 2025
  5. Free, publicly-accessible full text available May 3, 2025
  6. Free, publicly-accessible full text available June 1, 2025
  7. Discrete dynamical systems are commonly used to model the spread of contagions on real-world networks. Under the PAC framework, existing research has studied the problem of learning the behavior of a system, assuming that the underlying network is known. In this work, we focus on a more challenging setting: to learn both the behavior and the underlying topology of a black-box system. We show that, in general, this learning problem is computationally intractable. On the positive side, we present efficient learning methods under the PAC model when the underlying graph of the dynamical system belongs to certain classes. Further, we examine a relaxed setting where the topology of an unknown system is partially observed. For this case, we develop an efficient PAC learner to infer the system and establish the sample complexity. Lastly, we present a formal analysis of the expressive power of the hypothesis class of dynamical systems where both the topology and behavior are unknown, using the well-known Natarajan dimension formalism. Our results provide a theoretical foundation for learning both the topology and behavior of discrete dynamical systems. 
    more » « less
  8. Abstract Healthcare-associated infections (HAIs) are a major problem in hospital infection control. Although HAIs can be suppressed using contact precautions, such precautions are expensive, and we can only apply them to a small fraction of patients (i.e., a limited budget). In this work, we focus on two clinical problems arising from the limited budget: (a) choosing the best patients to be placed under precaution given a limited budget to minimize the spread (the isolation problem), and (b) choosing the best patients to release when limited budget requires some of the patients to be cleared from precaution (the clearance problem). A critical challenge in addressing them is that HAIs have multiple transmission pathways such that locations can also accumulate ‘load’ and spread the disease. One of the most common practices when placing patients under contact precautions is the regular clearance of pathogen loads. However, standard propagation models like independent cascade (IC)/susceptible-infectious-susceptible (SIS) cannot capture such mechanisms directly. Hence to account for this challenge, using non-linear system theory, we develop a novel spectral characterization of a recently proposed pathogen load based model,2-Mode-SISmodel, on people/location networks to capture spread dynamics of HAIs. We formulate the two clinical problems using this spectral characterization and develop effective and efficient algorithms for them. Our experiments show that our methods outperform several natural structural and clinical approaches on real-world hospital testbeds and pick meaningful solutions. 
    more » « less
  9. Set Cover is a fundamental problem in combinatorial optimization which has been studied for many decades due to its various applications across multiple domains. In many of these domains, the input data consists of locations, relationships, and other sensitive information of individuals which may leaked due to the set cover output. Attempts have been made to design privacy-preserving algorithms to solve the Set Cover problem under privacy constraints. Under differential privacy, it has been proved that the Set Cover problem has strong impossibility results and no explicit forms of the output can be released to the public. In this work, we observe that these hardness results dissolve when we turn to the Partial Set Cover problem, where we only need to cover a constant fraction of the elements. We show that this relaxation enables us to avoid the impossibility results, and give the first algorithm which outputs an explicit form of set cover with non-trivial utility guarantees under differential privacy. Using our algorithm as a subroutine, we design a differentially-private bicriteria algorithm to solve a recently-proposed facility-location problem for vaccine distribution which generalizes k-supplier with outliers. Our analysis shows that relaxing the covering requirement also allows us to circumvent the inherent hardness of k-supplier and give the first nontrivial guarantees. 
    more » « less