Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

An εapproximate quantile sketch over a stream of n inputs approximates the rank of any query point q—that is, the number of input points less than q—up to an additive error of εn, generally with some probability of at least 1−1/ poly(n), while consuming o(n) space. While the celebrated KLL sketch of Karnin, Lang, and Liberty achieves a provably optimal quantile approximation algorithm over worstcase streams, the approximations it achieves in practice are often far from optimal. Indeed, the most commonly used technique in practice is Dunning’s tdigest, which often achieves much better approximations than KLL on realworld data but is known to have arbitrarily large errors in the worst case. We apply interpolation techniques to the streaming quantiles problem to attempt to achieve better approximations on realworld data sets than KLL while maintaining similar guarantees in the worst case.more » « less

Recent work shows that the expressive power of Graph Neural Networks (GNNs) in distinguishing nonisomorphic graphs is exactly the same as that of the WeisfeilerLehman (WL) graph test. In particular, they show that the WL test can be simulated by GNNs. However, those simulations involve neural networks for the “combine” function of size polynomial or even exponential in the number of graph nodes n, as well as feature vectors of length linear in n. We present an improved simulation of the WL test on GNNs with exponentially lower complexity. In particular, the neural network implementing the combine function in each node has only polylog(n) parameters, and the feature vectors exchanged by the nodes of GNN consists of only O(log n) bits. We also give logarithmic lower bounds for the feature vector length and the size of the neural networks, showing the (near)optimality of our construction.more » « less

We study fast algorithms for computing fundamental properties of a positive semidefinite kernel matrix K∈ R^{n*n} corresponding to n points x1,…,xn∈R^d. In particular, we consider estimating the sum of kernel matrix entries, along with its top eigenvalue and eigenvector. We show that the sum of matrix entries can be estimated to 1+ϵ relative error in time sublinear in n and linear in d for many popular kernels, including the Gaussian, exponential, and rational quadratic kernels. For these kernels, we also show that the top eigenvalue (and an approximate eigenvector) can be approximated to 1+ϵ relative error in time subquadratic in n and linear in d. Our algorithms represent significant advances in the best known runtimes for these problems. They leverage the positive definiteness of the kernel matrix, along with a recent line of work on efficient kernel density estimation.more » « less

We consider the problem of estimating the number of distinct elements in a large data set (or, equivalently, the support size of the distribution induced by the data set) from a random sample of its elements. The problem occurs in many applications, including biology, genomics, computer systems and linguistics. A line of research spanning the last decade resulted in algorithms that estimate the support up to ±εn from a sample of size O(log2(1/ε)·n/logn), where n is the data set size. Unfortunately, this bound is known to be tight, limiting further improvements to the complexity of this problem. In this paper we consider estimation algorithms augmented with a machinelearningbased predictor that, given any element, returns an estimation of its frequency. We show that if the predictor is correct up to a constant approximation factor, then the sample complexity can be reduced significantly, to log(1/ε)·n1−Θ(1/log(1/ε)).We evaluate the proposed algorithms on a collection of data sets, using the neuralnetwork based estimators from Hsu et al, ICLR’19 as predictors. Our experiments demonstrate substantial (up to 3x) improvements in the estimation accuracy compared to the state of the art algorithm.more » « less