skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wampler, Charles W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Larochelle, Pierre; McCarthy, J Michael; Lusk, Craig P (Ed.)
    An algorithm is presented for computing the tension in an elastic cable subject to sagging under its own weight, a problem highly relevant in tethered systems such as cable-driven parallel robots. This requires solving the two coupled equations of the Irvine cable model, which give the endpoint position as a function of vertical and horizontal components of tension. Via a change of variables, we reformulate this system as a pair of uncoupled equations, which are shown to have a unique solution. We develop an efficient numerical procedure to solve one of these, after which closed-form formulas provide the solution of the second equation and ultimately the tension components. 
    more » « less
  2. Larochelle, Pierre; McCarthy, J Michael; Lusk, Craig P (Ed.)
  3. Designing and analyzing large cable-driven parallel robots (CDPRs) for precision tasks can be challenging, as the position kinematics are governed by kineto-statics and cable sag equations. Our aim is to find all equilibria for a given set of unstrained cable lengths using numerical continuation techniques. The Irvine sagging cable model contains both non-algebraic and multi-valued functions. The former removes the guarantee of finiteness on the number of isolated solutions, making homotopy start system construction less clear. The latter introduces branch cuts, which could lead to failures during path tracking. We reformulate the Irvine model to eliminate multi-valued functions and propose a heuristic numerical continuation method based on monodromy, removing the reliance on a start system. We demonstrate this method on an eight-cable spatial CDPR, resulting in a well-constrained non-algebraic system with 31 equations. The method is applied to four examples from literature that were previously solved in bounded regions. Our method computes the previously reported solutions along with new solutions outside those bounds much faster, showing that this numerical method enhances existing approaches for comprehensively analyzing CDPR kineto-statics. 
    more » « less
  4. Abstract Cognate linkages provide the useful property in mechanism design of having the same motion. This paper describes an approach for determining all coupler curve cognates for planar linkages with rotational joints. Although a prior compilation of six-bar cognates due to Dijksman purported to be a complete list, that analysis assumed, without proof, that cognates only arise by permuting link rotations. Our approach eliminates that assumption using arguments concerning the singular foci of the coupler curve to constrain a cognate search and then completing the analysis by solving a precision point problem. This analysis confirms that Dijksman’s list for six-bars is comprehensive. As we further demonstrate on an eight-bar and a ten-bar example, the method greatly constrains the set of permutations of link rotations that can possibly lead to cognates, thereby facilitating the discovery of all cognates that arise in that manner. However, for these higher order linkages, the further step of using a precision point test to eliminate the possibility of any other cognates is still beyond our computational capabilities. 
    more » « less
  5. Abstract—We present a method for solving two minimal problems for relative camera pose estimation from three views, which are based on three view correspondences of (i) three points and one line and the novel case of (ii) three points and two lines through two of the points. These problems are too difficult to be efficiently solved by the state of the art Gro ̈bner basis methods. Our method is based on a new efficient homotopy continuation (HC) solver framework MINUS, which dramatically speeds up previous HC solving by specializing HC methods to generic cases of our problems. We characterize their number of solutions and show with simulated experiments that our solvers are numerically robust and stable under image noise, a key contribution given the borderline intractable degree of nonlinearity of trinocular constraints. We show in real experiments that (i) SIFT feature location and orientation provide good enough point-and-line correspondences for three-view reconstruction and (ii) that we can solve difficult cases with too few or too noisy tentative matches, where the state of the art structure from motion initialization fails. 
    more » « less
  6. null (Ed.)
    Abstract Cognate linkages are mechanisms that share the same motion, a property that can be useful in mechanical design. This article treats planar curve cognates, that is, planar mechanisms with rotational joints whose coupler points draw the same curve, as well as coupler cognates and timed curve cognates. The purpose of this article is to develop a straightforward method based solely on kinematic equations to construct cognates. The approach computes cognates that arise from permuting link rotations and is shown to reproduce all of the known results for cognates of four-bar and six-bar linkages. This approach is then used to construct a cognate of an eight-bar and a ten-bar linkage. 
    more » « less