skip to main content

Search for: All records

Creators/Authors contains: "Wang, Gang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 25, 2023
  2. Different techniques have been recommended to detect fraudulent responses in online surveys, but little research has been taken to systematically test the extent to which they actually work in practice. In this paper, we conduct an empirical evaluation of 22 antifraud tests in two complementary online surveys. The first survey recruits Rust programmers on public online forums and social media networks. We find that fraudulent respondents involve both bot and human characteristics. Among different anti-fraud tests, those designed based on domain knowledge are the most effective. By combining individual tests, we can achieve a detection performance as good as commercial techniques while making the results more explainable. To explore these tests under a broader context, we ran a different survey on Amazon Mechanical Turk (MTurk). The results show that for a generic survey without requiring users to have any domain knowledge, it is more difficult to distinguish fraudulent responses. However, a subset of tests still remain effective.
    Free, publicly-accessible full text available April 1, 2023
  3. Free, publicly-accessible full text available April 1, 2023
  4. Free, publicly-accessible full text available January 1, 2023
  5. Free, publicly-accessible full text available November 12, 2022
  6. Free, publicly-accessible full text available December 1, 2022
  7. Free, publicly-accessible full text available November 2, 2022
  8. To enable targeted ads, companies profile Internet users, automatically inferring potential interests and demographics. While current profiling centers on users' web browsing data, smartphones and other devices with rich sensing capabilities portend profiling techniques that draw on methods from ubiquitous computing. Unfortunately, even existing profiling and ad-targeting practices remain opaque to users, engendering distrust, resignation, and privacy concerns. We hypothesized that making profiling visible at the time and place it occurs might help users better understand and engage with automatically constructed profiles. To this end, we built a technology probe that surfaces the incremental construction of user profiles from both web browsing and activities in the physical world. The probe explores transparency and control of profile construction in real time. We conducted a two-week field deployment of this probe with 25 participants. We found that increasing the visibility of profiling helped participants anticipate how certain actions can trigger specific ads. Participants' desired engagement with their profile differed in part based on their overall attitudes toward ads. Furthermore, participants expected algorithms would automatically determine when an inference was inaccurate, no longer relevant, or off-limits. Current techniques typically do not do this. Overall, our findings suggest that leveraging opportunistic moments within pervasivemore »computing to engage users with their own inferred profiles can create more trustworthy and positive experiences with targeted ads.« less
  9. Free, publicly-accessible full text available October 1, 2022
  10. Electrolyte-gated transistors (EGTs) hold great promise for next-generation printed logic circuitry, biocompatible integrated sensors, and neuromorphic devices. However, EGT-based complementary circuits with high voltage gain and ultralow driving voltage (<0.5 V) are currently unrealized, because achieving balanced electrical output for both the p- and n-type EGT components has not been possible with current materials. Here we report high-performance EGT complementary circuits containing p-type organic electrochemical transistors (OECTs) fabricated with an ion-permeable organic semiconducting polymer (DPP-g2T) and an n-type electrical double-layer transistor (EDLT) fabricated with an ion-impermeable inorganic indium–gallium–zinc oxide (IGZO) semiconductor. Adjusting the IGZO composition enables tunable EDLT output which, for In:Ga:Zn = 10:1:1 at%, balances that of the DPP-g2T OECT. The resulting hybrid electrolyte-gated inverter (HCIN) achieves ultrahigh voltage gains (>110) under a supply voltage of only 0.7 V. Furthermore, NAND and NOR logic circuits on both rigid and flexible substrates are realized, enabling not only excellent logic response with driving voltages as low as 0.2 V but also impressive mechanical flexibility down to 1-mm bending radii. Finally, the HCIN was applied in electrooculographic (EOG) signal monitoring for recording eye movement, which is critical for the development of wearable medical sensors and also interfaces for human–computer interaction; the highmore »voltage amplification of the present HCIN enables EOG signal amplification and monitoring in which a small ∼1.5 mV signal is amplified to ∼30 mV.

    « less