Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We propose a differentially private linear contextual bandit algorithm, via a tree-based mechanism to add Laplace or Gaussian noise to model parameters. Our key insight is that as the model converges during online update, the global sensitivity of its parameters shrinks over time (thus named dynamic global sensitivity). Compared with existing solutions, our dynamic global sensitivity analysis allows us to inject less noise to obtain $$(\epsilon, \delta)$$-differential privacy with added regret caused by noise injection in $$\tilde O(\log{T}\sqrt{T}/\epsilon)$$. We provide a rigorous theoretical analysis over the amount of noise added via dynamic global sensitivity and the corresponding upper regret bound of our proposed algorithm. Experimental results on both synthetic and real-world datasets confirmed the algorithm's advantage against existing solutions.more » « less
-
Chaudhuri, Kamalika; Jegelka, Stefanie; Song, Le; Szepesvari, Csaba; Niu, Gang; Sabato, Sivan (Ed.)We study adversarial attacks on linear stochastic bandits: by manipulating the rewards, an adversary aims to control the behaviour of the bandit algorithm. Perhaps surprisingly, we first show that some attack goals can never be achieved. This is in a sharp contrast to context-free stochastic bandits, and is intrinsically due to the correlation among arms in linear stochastic bandits. Motivated by this finding, this paper studies the attackability of a $$k$$-armed linear bandit environment. We first provide a complete necessity and sufficiency characterization of attackability based on the geometry of the arms’ context vectors. We then propose a two-stage attack method against LinUCB and Robust Phase Elimination. The method first asserts whether the given environment is attackable; and if yes, it poisons the rewards to force the algorithm to pull a target arm linear times using only a sublinear cost. Numerical experiments further validate the effectiveness and cost-efficiency of the proposed attack method.more » « less
-
Online learning to rank (OL2R) optimizes the utility of returned search results based on implicit feedback gathered directly from users. In this paper, we accelerate the online learning process by efficient exploration in the gradient space. Our algorithm, named as Null Space Gradient Descent, reduces the exploration space to only the null space of recent poorly performing gradients. This prevents the algorithm from repeatedly exploring directions that have been discouraged by the most recent interactions with users. To improve sensitivity of the resulting interleaved test, we selectively construct candidate rankers to maximize the chance that they can be differentiated by candidate ranking documents in the current query; and we use historically difficult queries to identify the best ranker when tie occurs in comparing the rankers. Extensive experimental comparisons with the state-of-the-art OL2R algorithms on several public benchmarks confirmed the effectiveness of our proposal algorithm, especially in its fast learning convergence and promising ranking quality at an early stage.more » « less