skip to main content

Search for: All records

Creators/Authors contains: "Wang, Jian-Ping"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Thin ferromagnetic films possessing perpendicular magnetic anisotropy derived from the crystal lattice can deliver the requisite magnetocrystalline anisotropy density for thermally stable magnetic memory and logic devices at the single-digit-nm lateral size. Here, we demonstrate that an epitaxial synthetic antiferromagnet can be formed from L10FePd, a candidate material with large magnetocrystalline anisotropy energy, through insertion of an ultrathin Ir spacer. Tuning of the Ir spacer thickness leads to synthetic antiferromagnetically coupled FePd layers, with an interlayer exchange field upwards of 0.6 T combined with a perpendicular magnetic anisotropy energy of 0.95 MJ/m3and a low Gilbert damping of 0.01. Temperature-dependent ferromagnetic resonance measurements show that the Gilbert damping is mostly insensitive to temperature over a range of 20 K up to 300 K. In FePd|Ir|FePd trilayers with lower interlayer exchange coupling, optic and acoustic dynamic ferromagnetic resonance modes are explored as a function of temperature. The ability to engineer low damping and large interlayer exchange coupling in FePd|Ir|FePd synthetic antiferromagnets with high perpendicular magnetic anisotropy could prove useful for high performance spintronic devices.

    more » « less
  2. Abstract

    To treat diseases associated with vagal nerve control of peripheral organs, it is necessary to selectively activate efferent and afferent fibers in the vagus. As a result of the nerve’s complex anatomy, fiber-specific activation proves challenging. Spatially selective neuromodulation using micromagnetic stimulation(μMS) is showing incredible promise. This neuromodulation technique uses microcoils(μcoils) to generate magnetic fields by powering them with a time-varying current. Following the principles of Faraday’s law of induction, a highly directional electric field is induced in the nerve from the magnetic field. In this study on rodent cervical vagus, a solenoidalμcoil was oriented at an angle to left and right branches of the nerve. The aim of this study was to measure changes in the mean arterial pressure (MAP) and heart rate (HR) followingμMS of the vagus. Theμcoils were powered by a single-cycle sinusoidal current varying in pulse widths(PW = 100, 500, and 1000μsec) at a frequency of 20 Hz. Under the influence of isoflurane,μMS of the left vagus at 1000μsec PW led to an average drop in MAP of 16.75 mmHg(n = 7). In contrast,μMS of the right vagus under isoflurane resulted in an average drop of 11.93 mmHg in the MAP(n = 7). Surprisingly, there were no changes in HR to either right or left vagalμMS suggesting the drop in MAP associated with vagusμMS was the result of stimulation of afferent, but not efferent fibers. In urethane anesthetized rats, no changes in either MAP or HR were observed uponμMS of the right or left vagus(n = 3). These findings suggest the choice of anesthesia plays a key role in determining the efficacy ofμMS on the vagal nerve. Absence of HR modulation uponμMS could offer alternative treatment options using VNS with fewer heart-related side-effects.

    more » « less
  3. Free, publicly-accessible full text available November 1, 2024
  4. Using in situ atomic-resolution scanning transmission electron microscopy, atomic movements and rearrangements associated with diffusive solid to solid phase transformations in the Pt−Sn system are captured to reveal details of the underlying atomistic mechanisms that drive these transformations. In the PtSn4 to PtSn2 phase transformation, a periodic superlattice substructure and a unique intermediate structure precede the nucleation and growth of the PtSn2 phase. At the atomic level, all stages of the transformation are templated by the anisotropic crystal structure of the parent PtSn4 phase. In the case of the PtSn2 to Pt2Sn3 transformation, the anisotropy in the structure of product Pt2Sn3 dictates the path of transformation. Analysis of atomic configurations at the transformation front elucidates the diffusion pathways and lattice distortions required for these phase transformations. Comparison of multiple Pt−Sn phase transformations reveals the structural parameters governing solid to solid phase transformations in this technologically interesting intermetallic system. 
    more » « less
    Free, publicly-accessible full text available August 23, 2024
  5. Abstract

    Unidirectional magnetoresistance (UMR) has been observed in a variety of stacks with ferromagnetic/spin Hall material bilayer structures. In this work, UMR in antiferromagnetic insulator Fe2O3/Pt structure is reported. The UMR has a negative value, which is related to interfacial Rashba coupling and band splitting. Thickness‐dependent measurement reveals a potential competition between UMR and the unidirectional spin Hall magnetoresistance (USMR). This work reveals the existence of UMR in antiferromagnetic insulators/heavy metal bilayers and broadens the way for the application of antiferromagnet‐based spintronic devices.

    more » « less
    Free, publicly-accessible full text available August 1, 2024
  6. Abstract

    Contrary to topological insulators, topological semimetals possess a nontrivial chiral anomaly that leads to negative magnetoresistance and are hosts to both conductive bulk states and topological surface states with intriguing transport properties for spintronics. Here, we fabricate highly-ordered metallic Pt3Sn and Pt3SnxFe1-xthin films via sputtering technology. Systematic angular dependence (both in-plane and out-of-plane) study of magnetoresistance presents surprisingly robust quadratic and linear negative longitudinal magnetoresistance features for Pt3Sn and Pt3SnxFe1-x, respectively. We attribute the anomalous negative longitudinal magnetoresistance to the type-II Dirac semimetal phase (pristine Pt3Sn) and/or the formation of tunable Weyl semimetal phases through symmetry breaking processes, such as magnetic-atom doping, as confirmed by first-principles calculations. Furthermore, Pt3Sn and Pt3SnxFe1-xshow the promising performance for facilitating the development of advanced spin-orbit torque devices. These results extend our understanding of chiral anomaly of topological semimetals and can pave the way for exploring novel topological materials for spintronic devices.

    more » « less
    Free, publicly-accessible full text available December 1, 2024
  7. Abstract

    Anisotropic planar polaritons - hybrid electromagnetic modes mediated by phonons, plasmons, or excitons - in biaxial two-dimensional (2D) van der Waals crystals have attracted significant attention due to their fundamental physics and potential nanophotonic applications. In this Perspective, we review the properties of planar hyperbolic polaritons and the variety of methods that can be used to experimentally tune them. We argue that such natural, planar hyperbolic media should be fairly common in biaxial and uniaxial 2D and 1D van der Waals crystals, and identify the untapped opportunities they could enable for functional (i.e. ferromagnetic, ferroelectric, and piezoelectric) polaritons. Lastly, we provide our perspectives on the technological applications of such planar hyperbolic polaritons.

    more » « less
  8. Understanding the mechanisms of unidirectional magnetoresistance (UMR) has become an important topic for its potential application of a two-terminal spin–orbit torque device. Field sweep DC measurements have been proposed and adopted to measure the value of UMR instead of second harmonic measurements. In this paper, potential measurement errors in conventional DC measurements are investigated. Oersted field and field-like torque usually do not influence the measurement, but a large field-like torque was found to lead to an anisotropic magnetoresistance difference when the sample is not perfectly aligned with the external field. The existence of ordinary magnetoresistance was also found to contribute to a large background. In this paper, an alternative measurement method for UMR was proposed and demonstrated to address those issues related to previous DC measurements. Our work may broaden the understanding of the error sources of UMR measurements and provide a reliable DC measurement method for the characterization of UMR. 
    more » « less
  9. Abstract

    Nb and its compounds are widely used in quantum computing due to their high superconducting transition temperatures and high critical fields. Devices that combine superconducting performance and spintronic non-volatility could deliver unique functionality. Here we report the study of magnetic tunnel junctions with Nb as the heavy metal layers. An interfacial perpendicular magnetic anisotropy energy density of 1.85 mJ/m2was obtained in Nb/CoFeB/MgO heterostructures. The tunneling magnetoresistance was evaluated in junctions with different thickness combinations and different annealing conditions. An optimized magnetoresistance of 120% was obtained at room temperature, with a damping parameter of 0.011 determined by ferromagnetic resonance. In addition, spin-transfer torque switching has also been successfully observed in these junctions with a quasistatic switching current density of 7.3$$\times \;10^{5}$$×105A/cm2.

    more » « less