skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Dana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. Motivation: Modeling genetics of gene expression had been effective at highlighting cis-eQTLs, variants that control nearby transcripts. Yet, incorporation of long-range effects has been hampered by unfavora- ble statistical considerations. On the other end, expression alone has been modeled across tissues by decomposition into contributing factors, without any connection to genetics. Results: We develop MIxed-Layer Analysis of Genetics and Expression (MILAGE), a model that combines direct effects of cis-SNPs on nearby transcripts with trans-effects that control global factors of expression in a tissue-specific pattern. We develop judicious initialization of the model, followed by gradient descent learning. We present GPU-based implementation of the learner to enable computational feasibility in this otherwise intractably-large parameter space. We show the model to explain > 59% of test-set variation in GTEx data. The inferred genetically-regulated factors are consistent with expected tissue similarity. 
    more » « less