skip to main content

Search for: All records

Creators/Authors contains: "Yang, X"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A vector's susceptibility and ability to transmit a pathogen—termed vector competency—determines disease outcomes, yet the ecological factors influencing tick vector competency remain largely unknown. Ixodes pacificus, the tick vector of Borrelia burgdorferi (Bb) in the western U.S., feeds on rodents, birds, and lizards. Rodents and birds are reservoirs for Bb and infect juvenile ticks, while lizards are refractory to Bb and cannot infect feeding ticks. Additionally, the lizard bloodmeal contains borreliacidal properties, clearing previously infected feeding ticks of their Bb infection. Despite I. pacificus feeding on a range of hosts, it is undetermined how the host identity of the larvalmore »bloodmeal affects future nymphal vector competency. We experimentally evaluate the influence of larval host bloodmeal on Bb acquisition by nymphal I. pacificus. Larval I. pacificus were fed on either lizards or mice and after molting, nymphs were fed on Bb-infected mice. We found that lizard-fed larvae were significantly more likely to become infected with Bb during their next bloodmeal than mouse-fed larvae. We also conducted the first RNA-seq analysis on whole-bodied I. pacificus and found significant upregulation of tick antioxidants and antimicrobial peptides in the lizard-fed group. Our results indicate that the lizard bloodmeal significantly alters vector competency and gene regulation in ticks, highlighting the importance of host bloodmeal identity in vector-borne disease transmission and upends prior notions about the role of lizards in Lyme disease community ecology.« less
    Free, publicly-accessible full text available January 1, 2023
  2. Free, publicly-accessible full text available July 15, 2022
  3. Free, publicly-accessible full text available September 16, 2022
  4. Abstract

    This paper presents a bilinear log model, for predicting temperature-dependent ultimate strength of high-entropy alloys (HEAs) based on 21 HEA compositions. We consider the break temperature,Tbreak, introduced in the model, an important parameter for design of materials with attractive high-temperature properties, one warranting inclusion in alloy specifications. For reliable operation, the operating temperature of alloys may need to stay belowTbreak. We introduce a technique of global optimization, one enabling concurrent optimization of model parameters over low-temperature and high-temperature regimes. Furthermore, we suggest a general framework for joint optimization of alloy properties, capable of accounting for physics-based dependencies, and showmore »how a special case can be formulated to address the identification of HEAs offering attractive ultimate strength. We advocate for the selection of an optimization technique suitable for the problem at hand and the data available, and for properly accounting for the underlying sources of variations.

    « less
  5. Abstract The Higgs mechanism, i.e., spontaneous symmetry breaking of the quantum vacuum, is a cross-disciplinary principle, universal for understanding dark energy, antimatter and quantum materials, from superconductivity to magnetism. Unlike one-band superconductors (SCs), a conceptually distinct Higgs amplitude mode can arise in multi-band, unconventional superconductors  via strong interband Coulomb interaction, but is yet to be accessed. Here we discover such hybrid Higgs mode and demonstrate its quantum control by light in iron-based high-temperature SCs. Using terahertz (THz) two-pulse coherent spectroscopy, we observe a tunable amplitude mode coherent oscillation of the complex order parameter from coupled lower and upper bands. The nonlinear dependence ofmore »the hybrid Higgs mode on the THz driving fields is distinct from any known SC results: we observe a large reversible modulation of resonance strength, yet with a persisting mode frequency. Together with quantum kinetic modeling of a hybrid Higgs mechanism, distinct from charge-density fluctuations and without invoking phonons or disorder, our result provides compelling evidence for a light-controlled coupling between the electron and hole amplitude modes assisted by strong interband quantum entanglement. Such light-control of Higgs hybridization can be extended to probe many-body entanglement and hidden symmetries in other complex systems.« less
    Free, publicly-accessible full text available December 1, 2022