skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yesilyurt, Omer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We demonstrate an industrially scalable fabrication process for the integration of SiN/SiO2single photon emitters into on-chip nanophotonic structures with sub-diffraction limited placement accuracy. 
    more » « less
  2. Multilayer films with continuously varying indices for each layer have attracted great deal of attention due to their superior optical, mechanical, and thermal properties. However, difficulties in fabrication have limited their application and study in scientific literature compared to multilayer films with fixed index layers. In this work we propose a neural network based inverse design technique enabled by a differentiable analytical solver for realistic design and fabrication of single material variable-index multilayer films. This approach generates multilayer films with excellent performance under ideal conditions. We furthermore address the issue of how to translate these ideal designs into practical useful devices which will naturally suffer from growth imperfections. By integrating simulated systematic and random errors just as a deposition tool would into the optimization process, we demonstrated that the same neural network that produced the ideal device can be retrained to produce designs compensating for systematic deposition errors. Furthermore, the proposed approach corrects for systematic errors even in the presence of random fabrication imperfections. The results outlined in this paper provide a practical and experimentally viable approach for the design of single material multilayer film stacks for an extremely wide variety of practical applications with high performance. 
    more » « less
  3. We create intrinsic quantum emitters in silicon nitride, study their structure and temperature-dependent optical properties, and demonstrate monolithic integration with photonic waveguides to evaluate the potential of these single-photon sources for quantum information applications. 
    more » « less
  4. We report on the generation of single-photon emitters in silicon nitride. We demonstrate monolithic integration of these quantum emitters with silicon nitride waveguides showing a room-temperature off-chip count-rate of ~104counts/s and clear antibunching behavior. 
    more » « less
  5. A high yield (67%) method of creating single photon emitters in annealed silicon nitride on silicon oxide pillars is demonstrated. Furthermore, the SPE emitter placement precision is found to be between ±30nm- ±85nm. 
    more » « less
  6. We demonstrated large scale deterministic creation of single photon emitters in annealed silicon nitride on silicon oxide pillars. The estimated single photon emitter yield is approximately 50% with a lateral accuracy of ±85nm. 
    more » « less
  7. Silicon nitride has great potential for integrated quantum photonics. We demonstrate monolithic integration of intrinsic quantum emitters in SiN with waveguides which show a room-temperature off-chip count rate of ~104counts/s and clear antibunching behavior. 
    more » « less