Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2024
-
Development of a simple, label-free screening technique capable of precisely and directly sensing interaction-in-solution over a size range from small molecules to large proteins such as antibodies could offer an important tool for researchers and pharmaceutical companies in the field of drug development. In this work, we present a thermostable Raman interaction profiling (TRIP) technique that facilitates low-concentration and low-dose screening of binding between protein and ligand in physiologically relevant conditions. TRIP was applied to eight protein–ligand systems, and produced reproducible high-resolution Raman measurements, which were analyzed by principal component analysis. TRIP was able to resolve time-depending binding between 2,4-dinitrophenol and transthyretin, and analyze biologically relevant SARS-CoV-2 spike-antibody interactions. Mixtures of the spike receptor–binding domain with neutralizing, nonbinding, or binding but nonneutralizing antibodies revealed distinct and reproducible Raman signals. TRIP holds promise for the future developments of high-throughput drug screening and real-time binding measurements between protein and drug.more » « less
-
Sub-picosecond timing jitter between optically synchronized femtosecond and picosecond laser systemsAbstract Synchronized optical pulses are widely used. We report here characterization and measurement of synchronized femtosecond and picosecond pulses from a Ti:Sapphire laser (nominally 800 nm) and a Nd:YAG laser (1064 nm), respectively. Synchronization is achieved by utilizing soliton self-frequency shift in a photonic-crystal fiber that allows the 800 nm femtosecond oscillator to seed the third-harmonic generation (355 nm) of picosecond regenerative amplifier. The relative timing jitter between the amplified femtosecond and the third-harmonic generation of picosecond pulses is (710 ± 160) fs, which is only (1.17 ± 0.26)% of the picosecond pulse duration. This work paves way for applications in stimulated Raman scattering spectroscopy and amplification.more » « less
-
Abstract In a viral pandemic, a few important tests are required for successful containment of the virus and reduction in severity of the infection. Among those tests, a test for the neutralizing ability of an antibody is crucial for assessment of population immunity gained through vaccination, and to test therapeutic value of antibodies made to counter the infections. Here, we report a sensitive technique to detect the relative neutralizing strength of various antibodies against the SARS-CoV-2 virus. We used bright, photostable, background-free, fluorescent upconversion nanoparticles conjugated with SARS-CoV-2 receptor binding domain as a phantom virion. A glass bottom plate coated with angiotensin-converting enzyme 2 (ACE-2) protein imitates the target cells. When no neutralizing IgG antibody was present in the sample, the particles would bind to the ACE-2 with high affinity. In contrast, a neutralizing antibody can prevent particle attachment to the ACE-2-coated substrate. A prototype system consisting of a custom-made confocal microscope was used to quantify particle attachment to the substrate. The sensitivity of this assay can reach 4.0 ng/ml and the dynamic range is from 1.0 ng/ml to 3.2 $$\upmu$$ μ g/ml. This is to be compared to 19 ng/ml sensitivity of commercially available kits.more » « less
-
We investigate quantum beats by monitoring cooperative emission from rubidium vapor and demonstrate correlated beats via coupled emission channels. We develop a theoretical model, and our simulations are in good agreement with experimental results. The results pave the way for advanced techniques measuring interactions between atoms that are excited to high energy levels.more » « less
-
Optical imaging through scattering media has long been a challenge. Many approaches have been developed for focusing light or imaging objects through scattering media, but usually, they are either invasive, limited to stationary or slow-moving media, or require high-resolution cameras and complex algorithms to retrieve the images. By utilizing spatial–temporal encoded patterns (STEPs), we introduce a technique for the computation of imaging that overcomes these restrictions. With a single-pixel photodetector, we demonstrate non-invasive imaging through scattering media. This technique is insensitive to the motion of the media. Furthermore, we demonstrate that our image reconstruction algorithm is much more efficient than correlation-based algorithms for single-pixel imaging, which may allow fast imaging for applications with limited computing resources.
-
null (Ed.)From the famous 1918 H1N1 influenza to the present COVID-19 pandemic, the need for improved viral detection techniques is all too apparent. The aim of the present paper is to show that identification of individual virus particles in clinical sample materials quickly and reliably is near at hand. First of all, our team has developed techniques for identification of virions based on a modular atomic force microscopy (AFM). Furthermore, femtosecond adaptive spectroscopic techniques with enhanced resolution via coherent anti-Stokes Raman scattering (FASTER CARS) using tip-enhanced techniques markedly improves the sensitivity [M. O. Scully, et al ., Proc. Natl. Acad. Sci. U.S.A. 99, 10994–11001 (2002)].more » « less