skip to main content

Search for: All records

Creators/Authors contains: "Ying, Yiming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Motivation

    Multispectral biological fluorescence microscopy has enabled the identification of multiple targets in complex samples. The accuracy in the unmixing result degrades (i) as the number of fluorophores used in any experiment increases and (ii) as the signal-to-noise ratio in the recorded images decreases. Further, the availability of prior knowledge regarding the expected spatial distributions of fluorophores in images of labeled cells provides an opportunity to improve the accuracy of fluorophore identification and abundance.

    Results

    We propose a regularized sparse and low-rank Poisson regression unmixing approach (SL-PRU) to deconvolve spectral images labeled with highly overlapping fluorophores which are recorded in low signal-to-noise regimes. First, SL-PRU implements multipenalty terms when pursuing sparseness and spatial correlation of the resulting abundances in small neighborhoods simultaneously. Second, SL-PRU makes use of Poisson regression for unmixing instead of least squares regression to better estimate photon abundance. Third, we propose a method to tune the SL-PRU parameters involved in the unmixing procedure in the absence of knowledge of the ground truth abundance information in a recorded image. By validating on simulated and real-world images, we show that our proposed method leads to improved accuracy in unmixing fluorophores with highly overlapping spectra.

    Availability and implementation

    The source code usedmore »for this article was written in MATLAB and is available with the test data at https://github.com/WANGRUOGU/SL-PRU.

    « less
  2. Free, publicly-accessible full text available January 1, 2024
  3. Free, publicly-accessible full text available August 1, 2023
  4. Multiple Instance Learning (MIL) provides a promising solution to many real-world problems, where labels are only available at the bag level but missing for instances due to a high labeling cost. As a powerful Bayesian non-parametric model, Gaussian Processes (GP) have been extended from classical supervised learning to MIL settings, aiming to identify the most likely positive (or least negative) instance from a positive (or negative) bag using only the bag-level labels. However, solely focusing on a single instance in a bag makes the model less robust to outliers or multi-modal scenarios, where a single bag contains a diverse set of positive instances. We propose a general GP mixture framework that simultaneously considers multiple instances through a latent mixture model. By adding a top-k constraint, the framework is equivalent to choosing the top-k most positive instances, making it more robust to outliers and multimodal scenarios. We further introduce a Distributionally Robust Optimization (DRO) constraint that removes the limitation of specifying a fix k value. To ensure the prediction power over high-dimensional data (eg, videos and images) that are common in MIL, we augment the GP kernel with fixed basis functions by using a deep neural network to learn adaptive basismore »functions so that the covariance structure of high-dimensional data can be accurately captured. Experiments are conducted on highly challenging real-world video anomaly detection tasks to demonstrate the effectiveness of the proposed model.« less