Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We perform an angular analysis of the decay for the dielectron mass squared, , range of using the full Belle dataset in the and channels, incorporating new methods of electron identification to improve the statistical power of the dataset. This analysis is sensitive to contributions from right-handed currents from physics beyond the Standard Model by constraining the Wilson coefficients . We perform a fit to the differential decay rate and measure the imaginary component of the transversality amplitude to be , and the transverse asymmetry to be , with and fixed to the Standard Model values. The resulting constraints on the value of are consistent with the Standard Model within a confidence interval. Published by the American Physical Society2024more » « less
- 
            We report the results of the first search for Standard Model and baryon-number-violating two-body decays of the neutral mesons to and using of data collected at the resonance with the Belle detector at the KEKB asymmetric-energy collider. We observe no evidence of signal from any such decays and set 95% confidence-level upper limits on the products of and branching fractions for these two-body decays with in the range between and . Published by the American Physical Society2024more » « less
- 
            We present a measurement of the branching fraction and fraction of longitudinal polarization of decays, which have two ’s in the final state. We also measure time-dependent violation parameters for decays into longitudinally polarized pairs. This analysis is based on a data sample containing mesons collected with the Belle II detector at the SuperKEKB asymmetric-energy collider in 2019–2022. We obtain , , , and , where the first uncertainties are statistical and the second are systematic. We use these results to perform an isospin analysis to constrain the Cabibbo-Kobayashi-Maskawa angle and obtain two solutions; the result consistent with other Standard Model constraints is . Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available May 1, 2026
- 
            A<sc>bstract</sc> Using data samples of 983.0 fb−1and 427.9 fb−1accumulated with the Belle and Belle II detectors operating at the KEKB and SuperKEKB asymmetric-energye+e−colliders, singly Cabibbo-suppressed decays$$ {\Xi}_c^{+}\to p{K}_S^0 $$ ,$$ {\Xi}_c^{+}\to \Lambda {\pi}^{+} $$ , and$$ {\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+} $$ are observed for the first time. The ratios of branching fractions of$$ {\Xi}_c^{+}\to p{K}_S^0 $$ ,$$ {\Xi}_c^{+}\to \Lambda {\pi}^{+} $$ , and$$ {\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+} $$ relative to that of$$ {\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+} $$ are measured to be$$ {\displaystyle \begin{array}{c}\frac{\mathcal{B}\left({\Xi}_c^{+}\to p{K}_S^0\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(2.47\pm 0.16\pm 0.07\right)\%,\\ {}\frac{\mathcal{B}\left({\Xi}_c^{+}\to \Lambda {\pi}^{+}\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(1.56\pm 0.14\pm 0.09\right)\%,\\ {}\frac{\mathcal{B}\left({\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+}\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(4.13\pm 0.26\pm 0.22\right)\%.\end{array}} $$ Multiplying these values by the branching fraction of the normalization channel,$$ \mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)=\left(2.9\pm 1.3\right)\% $$ , the absolute branching fractions are determined to be$$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^{+}\to p{K}_S^0\right)=\left(7.16\pm 0.46\pm 0.20\pm 3.21\right)\times {10}^{-4},\\ {}\mathcal{B}\left({\Xi}_c^{+}\to \Lambda {\pi}^{+}\right)=\left(4.52\pm 0.41\pm 0.26\pm 2.03\right)\times {10}^{-4},\\ {}\mathcal{B}\left({\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+}\right)=\left(1.20\pm 0.08\pm 0.07\pm 0.54\right)\times {10}^{-3}.\end{array}} $$ The first and second uncertainties above are statistical and systematic, respectively, while the third ones arise from the uncertainty in$$ \mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right) $$ .more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            A<sc>bstract</sc> We report measurements of the absolute branching fractions$$\mathcal{B}\left({B}_{s}^{0}\to {D}_{s}^{\pm }X\right)$$,$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{0}/{\overline{D} }^{0}X\right)$$, and$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{\pm }X\right)$$, where the latter is measured for the first time. The results are based on a 121.4 fb−1data sample collected at the Υ(10860) resonance by the Belle detector at the KEKB asymmetric-energye+e−collider. We reconstruct one$${B}_{s}^{0}$$meson in$${e}^{+}{e}^{-}\to \Upsilon\left(10860\right)\to {B}_{s}^{*}{\overline{B} }_{s}^{*}$$events and measure yields of$${D}_{s}^{+}$$,D0, andD+mesons in the rest of the event. We obtain$$\mathcal{B}\left({B}_{s}^{0}\to {D}_{s}^{\pm }X\right)=\left(68.6\pm 7.2\pm 4.0\right)\%$$,$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{0}/{\overline{D} }^{0}X\right)=\left(21.5\pm 6.1\pm 1.8\right)\%$$, and$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{\pm }X\right)=\left(12.6\pm 4.6\pm 1.3\right)\%$$, where the first uncertainty is statistical and the second is systematic. Averaging with previous Belle measurements gives$$\mathcal{B}\left({B}_{s}^{0}\to {D}_{s}^{\pm }X\right)=\left(63.4\pm 4.5\pm 2.2\right)\%$$and$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{0}/{\overline{D} }^{0}X\right)=\left(23.9\pm 4.1\pm 1.8\right)\%$$. For the$${B}_{s}^{0}$$production fraction at the Υ(10860), we find$${f}_{s}=\left({21.4}_{-1.7}^{+1.5}\right)\%$$.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            We measure the branching fraction of the decay using data collected with the Belle II detector at the SuperKEKB collider. The data contain meson pairs produced in energy-asymmetric collisions at the resonance. The measured branching fraction , where the first uncertainty is statistical and the second is systematic, is more precise than previous results and constitutes the first observation of the decay with a significance of 6.5 standard deviations. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available February 1, 2026
- 
            We present a measurement of the branching fraction and time-dependent charge-parity ( ) decay-rate asymmetries in decays. The data sample was collected with the Belle II detector at the SuperKEKB asymmetric collider in 2019–2022 and contains meson pairs from decays. We reconstruct signal decays and fit the parameters from the distribution of the proper-decay-time difference of the two mesons. We measure the branching fraction to be and the direct and mixing-induced asymmetries to be and , respectively, where the first uncertainties are statistical and the second are systematic. We observe mixing-induced violation with a significance of 5.0 standard deviations for the first time in this mode. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            We report measurements of time-dependent asymmetries in decays based on a data sample of events collected at the resonance with the Belle II detector. The Belle II experiment operates at the SuperKEKB asymmetric-energy collider. We measure decay-time distributions to determine -violating parameters and . We determine these parameters for two ranges of invariant mass: , which is dominated by decays, and a complementary region . Our results have improved precision as compared to previous measurements and are consistent with theory predictions. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            We describe a measurement of charge-parity ( ) violation asymmetries in decays using Belle II data. We consider and decays. The data were collected at the SuperKEKB asymmetric-energy collider between the years 2019 and 2022, and contain bottom-antibottom meson pairs. We reconstruct signal decays and extract the violating parameters from a fit to the distribution of the proper-decay-time difference between the two mesons. The measured direct and mixing-induced asymmetries are and , respectively, where the first uncertainties are statistical and the second are systematic. These results are in agreement with current world averages and standard model predictions. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available December 1, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
