skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zhang, Xuesong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Indentation testing is the most common approach to quantify mechanical brain tissue properties. Despite a myriad of studies conducted already, reported stiffness values vary extensively and continue to be subject of study. Moreover, the growing interest in the relationship between the brain's spatially heterogeneous microstructure and local tissue stiffness warrants the development of standardized measurement protocols to enable comparability between studies and assess repeatability of reported data. Here, we present three individual protocols that outline (1) sample preparation of a 1000‐µm thick coronal slice, (2) a comprehensive list of experimental parameters associated with the FemtoTools FT‐MTA03 Micromechanical Testing System for spherical indentation, and (3) two different approaches to derive the elastic modulus from raw force‐displacement data. Lastly, we demonstrate that our protocols deliver a robust experimental framework that enables us to determine the spatially heterogeneous microstructural properties of (mouse) brain tissue. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Mouse brain sample preparation Basic Protocol 2: Indentation testing of mouse brain tissue using the FemtoTools FT‐MTA03 Micromechanical Testing and Assembly System Basic Protocol 3: Tissue stiffness identification from force‐displacement data 
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  2. Although the Soil and Water Assessment Tool (SWAT) model has been widely used to assess the environmental impacts of growing perennial grasses for bioenergy production, its utility is limited by not explicitly accounting for shoot and root biomass development. In this study, we integrated the DAYCENT model's grass growth algorithms into SWAT (SWAT–GRASSD) and further modified it by considering the impact of leaf area index (LAI) on potential biomass production (SWAT–GRASSM). Based on testing at eight sites in the US Midwest, we found that SWAT–GRASSM generally outperformed SWAT and SWAT–GRASSD in simulating switchgrass biomass yield and the seasonal development of LAI. Additionally, SWAT–GRASSM can more realistically represent root development, which is key for the allocation of accumulated biomass and nutrients between aboveground and belowground biomass pools. These improvements are critical for credible assessment of agronomic and environmental impacts of growing perennial grasses for biomass production. 
    more » « less
  3. Morphological (e.g. shape, size, and height) and function (e.g. working, living, and shopping) information of buildings is highly needed for urban planning and management as well as other applications such as city-scale building energy use modeling. Due to the limited availability of socio-economic geospatial data, it is more challenging to map building functions than building morphological information, especially over large areas. In this study, we proposed an integrated framework to map building functions in 50 U.S. cities by integrating multi-source web-based geospatial data. First, a web crawler was developed to extract Points of Interest (POIs) from Tripadvisor.com, and a map crawler was developed to extract POIs and land use parcels from Google Maps. Second, an unsupervised machine learning algorithm named OneClassSVM was used to identify residential buildings based on landscape features derived from Microsoft building footprints. Third, the type ratio of POIs and the area ratio of land use parcels were used to identify six non-residential functions (i.e. hospital, hotel, school, shop, restaurant, and office). The accuracy assessment indicates that the proposed framework performed well, with an average overall accuracy of 94% and a kappa coefficient of 0.63. With the worldwide coverage of Google Maps and Tripadvisor.com, the proposed framework is transferable to other cities over the world. The data products generated from this study are of great use for quantitative city-scale urban studies, such as building energy use modeling at the single building level over large areas. 
    more » « less
  4. Nano-indentation is a promising method to identify the constitutive parameters of soft materials, including soft tissues. Especially when materials are very small and heterogeneous, nano-indentation allows mechanical interrogation where traditional methods may fail. However, because nano-indentation does not yield a homogeneous deformation field, interpreting the resulting load–displacement curves is non-trivial and most investigators resort to simplified approaches based on the Hertzian solution. Unfortunately, for small samples and large indentation depths, these solutions are inaccurate. We set out to use machine learning to provide an alternative strategy. We first used the finite element method to create a large synthetic data set. We then used these data to train neural networks to inversely identify material parameters from load–displacement curves. To this end, we took two different approaches. First, we learned the indentation forward problem, which we then applied within an iterative framework to identify material parameters. Second, we learned the inverse problem of directly identifying material parameters. We show that both approaches are effective at identifying the parameters of the neo-Hookean and Gent models. Specifically, when applied to synthetic data, our approaches are accurate even for small sample sizes and at deep indentation. Additionally, our approaches are fast, especially compared to the inverse finite element approach. Finally, our approaches worked on unseen experimental data from thin mouse brain samples. Here, our approaches proved robust to experimental noise across over 1000 samples. By providing open access to our data and code, we hope to support others that conduct nano-indentation on soft materials. 
    more » « less
  5. Abstract Earlier snowmelt, warmer temperatures and herbivory are among the factors that influence high-latitude tundra productivity near the town of Utqiaġvik in northern Alaska. However, our understanding of the potential interactions between these factors is limited. MODIS observations provide cover fractions of vegetation, snow, standing water, and soil, and fractional absorption of photosynthetically active radiation by canopy chlorophyll (fAPARchl) per pixel. Here, we evaluated a recent time-period (2001–2014) that the tundra experienced large interannual variability in vegetation productivity metrics (i.e. fAPARchland APARchl), which was explainable by both abiotic and biotic factors. We found earlier snowmelt to increase soil and vegetation cover, and productivity in June, while warmer temperatures significantly increased monthly productivity. However, abiotic factors failed to explain stark decreases in productivity during August of 2008, which coincided with a severe lemming outbreak. MODIS observations found this tundra ecosystem to completely recover two years later, resulting in elevated productivity. This study highlights the potential roles of both climate and herbivory in modulating the interannual variability of remotely retrieved plant productivity metrics in Arctic coastal tundra ecosystems. 
    more » « less
  6. Remotely sensed hydrologic variables, in conjunction with streamflow data, have been increasingly used to conduct multivariable calibration of hydrologic model parameters. Here, we calibrated the Soil and Water Assessment Tool (SWAT) model using different combinations of streamflow and remotely sensed hydrologic variables, including Atmosphere–Land Exchange Inverse (ALEXI) Evapotranspiration (ET), Moderate Resolution Imaging Spectroradiometer (MODIS) ET, and Soil MERGE (SMERGE) soil moisture. The results show that adding remotely sensed ET and soil moisture to the traditionally used streamflow for model calibration can impact the number and values of parameters sensitive to hydrologic modeling, but it does not necessarily improve the model performance. However, using remotely sensed ET or soil moisture data alone led to deterioration in model performance as compared with using streamflow only. In addition, we observed large discrepancies between ALEXI or MODIS ET data and the choice between these two datasets for model calibration can have significant implications for the performance of the SWAT model. The use of different combinations of streamflow, ET, and soil moisture data also resulted in noticeable differences in simulated hydrologic processes, such as runoff, percolation, and groundwater discharge. Finally, we compared the performance of SWAT and the SWAT-Carbon (SWAT-C) model under different multivariate calibration setups, and these two models exhibited pronounced differences in their performance in the validation period. Based on these results, we recommend (1) the assessment of various remotely sensed data (when multiple options available) for model calibration before choosing them for complementing the traditionally used streamflow data and (2) that different model structures be considered in the model calibration process to support robust hydrologic modeling. 
    more » « less
  7. Despite the extensive application of the Soil and Water Assessment Tool (SWAT) for water quality modeling, its ability to simulate soil inorganic nitrogen (SIN) dynamics in agricultural landscapes has not been directly verified. Here, we improved and evaluated the SWAT–Carbon (SWAT-C) model for simulating long-term (1984–2020) dynamics of SIN for 40 cropping system treatments in the U.S. Midwest. We added one new nitrification and two new denitrification algorithms to the default SWAT version, resulting in six combinations of nitrification and denitrification options with varying performance in simulating SIN. The combination of the existing nitrification method in SWAT and the second newly added denitrification method performed the best, achieving R, NSE, PBIAS, and RMSE of 0.63, 0.29, −4.7 %, and 16.0 kg N ha−1, respectively. This represents a significant improvement compared to the existing methods. In general, the revised SWAT-C model's performance was comparable to or better than other agroecosystem models tested in previous studies for assessing the availability of SIN for plant growth in different cropping systems. Sensitivity analysis showed that parameters controlling soil organic matter decomposition, nitrification, and denitrification were most sensitive for SIN simulation. Using SWAT-C for improved prediction of plant-available SIN is expected to better inform agroecosystem management decisions to ensure crop productivity while minimizing the negative environmental impacts caused by fertilizer application. 
    more » « less
  8. Abstract Climate change presents huge challenges to the already-complex decisions faced by U.S. agricultural producers, as seasonal weather patterns increasingly deviate from historical tendencies. Under USDA funding, a transdisciplinary team of researchers, extension experts, educators, and stakeholders is developing a climate decision support Dashboard for Agricultural Water use and Nutrient management (DAWN) to provide Corn Belt farmers with better predictive information. DAWN’s goal is to provide credible, usable information to support decisions by creating infrastructure to make subseasonal-to-seasonal forecasts accessible. DAWN uses an integrated approach to 1) engage stakeholders to coproduce a decision support and information delivery system; 2) build a coupled modeling system to represent and transfer holistic systems knowledge into effective tools; 3) produce reliable forecasts to help stakeholders optimize crop productivity and environmental quality; and 4) integrate research and extension into experiential, transdisciplinary education. This article presents DAWN’s framework for integrating climate–agriculture research, extension, and education to bridge science and service. We also present key challenges to the creation and delivery of decision support, specifically in infrastructure development, coproduction and trust building with stakeholders, product design, effective communication, and moving tools toward use. 
    more » « less