Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Phase-separated porous nanocomposite with ultralow percolation threshold for wireless bioelectronicsFree, publicly-accessible full text available April 29, 2025
-
The skin exhibits nonlinear mechanics, which is initially soft and stiffens rapidly as being stretched to prevent large deformation‐induced injuries. Developing skin‐interfaced bioelectronics with skin‐inspired nonlinear mechanical behavior, together with multiple other desired features (breathable, antibacterial, and sticky), is desirable yet challenging. Herein, this study reports the design, fabrication, and biomedical application of porous mesh bioelectronics that can simultaneously achieve these features. On the one hand, porous serpentine meshes of polyimide (PI) are designed and fabricated under the guidance of theoretical simulations to provide skin‐like nonlinear mechanics and high breathability. On the other hand, ultrasoft, sticky, and antibacterial polydimethylsiloxane (PDMS) is developed through epsilon polylysine (ε‐PL) modifications, which are currently lacking in the field. Here,ε‐PL‐modified PDMS is spray‐coated on PI meshes to form the core–shell structures without blocking their pores to offer ultrasoft, sticky, and antibacterial skin interfaces. And rationally designed porous hybrid meshes can not only retain skin‐like nonlinear mechanical properties but also enable the integration of both soft and hard bioelectronic components for various healthcare applications. As the exemplar example, this study integrates soft silver nanowires (AgNWs) based electrophysiological sensors and rigid commercial accelerometers on multifunctional porous meshes for concurrently monitoring heart electrical and mechanical functions to provide comprehensive information on the evolving heart status.more » « less
-
Abstract 3D conformable electronic devices on freeform surfaces show superior performance to the conventional, planar ones. They represent a trend of future electronics and have witnessed exponential growth in various applications. However, their potential is largely limited by a lack of sophisticated fabrication techniques. To tackle this challenge, a new direct freeform laser (DFL) fabrication method enabled by a 5‐axis laser processing platform for directly fabricating 3D conformable electronics on targeted arbitrary surfaces is reported. Accordingly, representative laser‐induced graphene (LIG), metals, and metal oxides are successfully fabricated as high‐performance sensing and electrode materials from different material precursors on various types of substrates for applications in temperature/light/gas sensing, energy storage, and printed circuit board for circuit. Last but not the least, to demonstrate an application in smart homes, LIG‐based conformable strain sensors are fabricated and distributed in designated locations of an artificial tree. The distributed sensors have the capability of monitoring the wind speed and direction with the assistance of well‐trained machine‐learning models. This novel process will pave a new and general route to fabricating 3D conformable electronic devices, thus creating new opportunities in robotics, biomedical sensing, structural health, environmental monitoring, and Internet of Things applications.
-
Abstract Graphene with a 3D porous structure is directly laser‐induced on lignocellulosic biopaper under ambient conditions and is further explored for multifunctional biomass‐based flexible electronics. The mechanically strong, flexible, and waterproof biopaper is fabricated by surface‐functionalizing cellulose with lignin‐based epoxy acrylate (LBEA). This composite biopaper shows as high as a threefold increase in tensile strength and excellent waterproofing compared with pure cellulose one. Direct laser writing (DLW) rapidly induces porous graphene from the biopaper in a single step. The porous graphene shows an interconnected carbon network, well‐defined graphene domains, and high electrical conductivity (e.g., ≈3 Ω per square), which can be tuned by lignin precursors and loadings as well as lasing conditions. The biopaper in situ embedded with porous graphene is facilely fabricated into flexible electronics for on‐chip and paper‐based applications. The biopaper‐based electronic devices, including the all‐solid‐state planer supercapacitor, electrochemical and strain biosensors, and Joule heater, show great performances. This study demonstrates the facile, versatile, and low‐cost fabrication of multifunctional graphene‐based electronics from lignocellulose‐based biopaper.
-
Abstract Mechanically guided, 3D assembly has attracted broad interests, owing to its compatibility with planar fabrication techniques and applicability to a diversity of geometries and length scales. Its further development requires the capability of on‐demand reversible shape reconfigurations, desirable for many emerging applications (e.g., responsive metamaterials, soft robotics). Here, the design, fabrication, and modeling of soft electrothermal actuators based on laser‐induced graphene (LIG) are reported and their applications in mechanically guided 3D assembly and human–soft actuators interaction are explored. Over 20 complex 3D architectures are fabricated, including reconfigurable structures that can reshape among three distinct geometries. Also, the structures capable of maintaining 3D shapes at room temperature without the need for any actuation are realized by fabricating LIG actuators at an elevated temperature. Finite element analysis can quantitatively capture key aspects that govern electrothermally controlled shape transformations, thereby providing a reliable tool for rapid design optimization. Furthermore, their applications are explored in human–soft actuators interaction, including elastic metamaterials with human gesture‐controlled bandgap behaviors and soft robotic fingers which can measure electrocardiogram from humans in an on‐demand fashion. Other demonstrations include artificial muscles, which can lift masses that are about 110 times of their weights and biomimetic frog tongues which can prey insects.