skip to main content

Search for: All records

Creators/Authors contains: "Zhu, Zhaohuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    We describe the first grid-based simulations of the polar alignment of a circumbinary disc. We simulate the evolution of an inclined disc around an eccentric binary using the grid-based code athena++ . The use of a grid-based numerical code allows us to explore lower disc viscosities than have been examined in previous studies. We find that the disc aligns to a polar orientation when the α viscosity is high, while discs with lower viscosity nodally precess with little alignment over 1000 binary orbital periods. The time-scales for polar alignment and disc precession are compared as a function of disc viscosity, and are found to be in agreement with previous studies. At very low disc viscosities (e.g. α = 10−5), anticyclonic vortices are observed along the inner edge of the disc. These vortices can persist for thousands of binary orbits, creating azimuthally localized overdensities and multiple pairs of spiral arms. The vortex is formed at ∼3–4 times the binary semimajor axis, close to the inner edge of the disc, and orbits at roughly the local Keplerian speed. The presence of a vortex in the disc may play an important role in the evolution of circumbinary systems, such as driving episodic accretionmore »and accelerating the formation of polar circumbinary planets.

    « less

    Despite many methods developed to find young massive planets in protoplanetary discs, it is challenging to directly detect low-mass planets that are embedded in discs. On the other hand, the core-accretion theory suggests that there could be a large population of embedded low-mass young planets at the Kelvin-Helmholtz (KH) contraction phase. We adopt both 1D models and 3D simulations to calculate the envelopes around low-mass cores (several to tens of M⊕) with different luminosities, and derive their thermal fluxes at radio wavelengths. We find that, when the background disc is optically thin at radio wavelengths, radio observations can see through the disc and probe the denser envelope within the planet’s Hill sphere. When the optically thin disc is observed with the resolution reaching one disc scale height, the radio thermal flux from the planetary envelope around a 10 M⊕ core is more than 10 per cent higher than the flux from the background disc. The emitting region can be extended and elongated. Finally, our model suggests that the au-scale clump at 52 au in the TW Hydrae disc revealed by ALMA is consistent with the envelope of an embedded 10–20 M⊕ planet, which can explain the detected flux, the spectral index dip,more »and the tentative spirals. The observation is also consistent with the planet undergoing pebble accretion. Future ALMA and ngVLA observations may directly reveal more such low-mass planets, enabling us to study core growth and even reconstruct the planet formation history using the embedded ‘protoplanet’ population.

    « less

    Rings and gaps are commonly observed in the dust continuum emission of young stellar discs. Previous studies have shown that substructures naturally develop in the weakly ionized gas of magnetized, non-ideal MHD discs. The gas rings are expected to trap large mm/cm-sized grains through pressure gradient-induced radial dust–gas drift. Using 2D (axisymmetric) MHD simulations that include ambipolar diffusion and dust grains of three representative sizes (1 mm, 3.3 mm, and 1 cm), we show that the grains indeed tend to drift radially relative to the gas towards the centres of the gas rings, at speeds much higher than in a smooth disc because of steeper pressure gradients. However, their spatial distribution is primarily controlled by meridional gas motions, which are typically much faster than the dust–gas drift. In particular, the grains that have settled near the mid-plane are carried rapidly inwards by a fast accretion stream to the inner edges of the gas rings, where they are lifted up by the gas flows diverted away from the mid-plane by a strong poloidal magnetic field. The flow pattern in our simulation provides an attractive explanation for the meridional flows recently inferred in HD 163296 and other discs, including both ‘collapsing’ regions where themore »gas near the disc surface converges towards the mid-plane and a disc wind. Our study highlights the prevalence of the potentially observable meridional flows associated with the gas substructure formation in non-ideal MHD discs and their crucial role in generating rings and gaps in dust.

    « less

    Spirals in protoplanetary discs have been used to locate the potential planet in discs. Since only the spiral shape from a circularly orbiting perturber is known, most previous works assume that the planet is in a circular orbit. We develop a simple semi-analytical method to calculate the shape of the spirals launched by an eccentric planet. We assume that the planet emits wavelets during its orbit, and the wave fronts of these propagating wavelets form the spirals. The resulting spiral shape from this simple method agrees with numerical simulations exceptionally well. The spirals excited by an eccentric planet can detach from the planet, bifurcate, or even cross each other, which are all reproduced by this simple method. The spiral’s bifurcation point corresponds to the wavelet that is emitted when the planet’s radial speed reaches the disc’s sound speed. Multiple spirals can be excited by an eccentric planet (more than five spirals when e ≳ 0.2). The pitch angle and pattern speed are different between different spirals and can vary significantly across one spiral. The spiral wakes launched by high-mass eccentric planets steepen to spiral shocks and the crossing of spiral shocks leads to distorted or broken spirals. With themore »same mass, a more eccentric planet launches weaker spirals and induces a shallower gap over a long period of time. The observed unusually large/small pitch angles of some spirals, the irregular multiple spirals, and the different pattern speeds between different spirals may suggest the existence of eccentric perturbers in protoplanetary discs.

    « less
  5. Abstract Rings and gaps are ubiquitous in protoplanetary disks. Larger dust grains will concentrate in gaseous rings more compactly due to stronger aerodynamic drag. However, the effects of dust concentration on the ring’s thermal structure have not been explored. Using MCRT simulations, we self-consistently construct ring models by iterating the ring’s thermal structure, hydrostatic equilibrium, and dust concentration. We set up rings with two dust populations having different settling and radial concentration due to their different sizes. We find two mechanisms that can lead to temperature dips around the ring. When the disk is optically thick, the temperature drops outside the ring, which is the shadowing effect found in previous studies adopting a single-dust population in the disk. When the disk is optically thin, a second mechanism due to excess cooling of big grains is found. Big grains cool more efficiently, which leads to a moderate temperature dip within the ring where big dust resides. This dip is close to the center of the ring. Such a temperature dip within the ring can lead to particle pileup outside the ring and feedback to the dust distribution and thermal structure. We couple the MCRT calculations with a 1D dust evolution modelmore »and show that the ring evolves to a different shape and may even separate to several rings. Overall, dust concentration within rings has moderate effects on the disk’s thermal structure, and a self-consistent model is crucial not only for protoplanetary disk observations but also for planetesimal and planet formation studies.« less
  6. ABSTRACT The streaming instability is a fundamental process that can drive dust–gas dynamics and ultimately planetesimal formation in protoplanetary discs. As a linear instability, it has been shown that its growth with a distribution of dust sizes can be classified into two distinct regimes, fast- and slow-growth, depending on the dust-size distribution and the total dust-to-gas density ratio ϵ. Using numerical simulations of an unstratified disc, we bring three cases in different regimes into non-linear saturation. We find that the saturation states of the two fast-growth cases are similar to its single-species counterparts. The one with maximum dimensionless stopping time τs,max = 0.1 and ϵ = 2 drives turbulent vertical dust–gas vortices, while the other with τs,max = 2 and ϵ = 0.2 leads to radial traffic jams and filamentary structures of dust particles. The dust density distribution for the former is flat in low densities, while the one for the latter has a low-end cut-off. By contrast, the one slow-growth case results in a virtually quiescent state. Moreover, we find that in the fast-growth regime, significant dust segregation by size occurs, with large particles moving towards dense regions while small particles remain in the diffuse regions, and the meanmore »radial drift of each dust species is appreciably altered from the (initial) drag-force equilibrium. The former effect may skew the spectral index derived from multiwavelength observations and change the initial size distribution of a pebble cloud for planetesimal formation. The latter along with turbulent diffusion may influence the radial transport and mixing of solid materials in young protoplanetary discs.« less
  7. Abstract We report an Atacama Large Millimeter/submillimeter Array 0.88 mm (Band 7) continuum detection of the accretion disk around SR 12 c, an ∼11 M Jup planetary-mass companion (PMC) orbiting its host binary at 980 au. This is the first submillimeter detection of a circumplanetary disk around a wide PMC. The disk has a flux density of 127 ± 14 μ Jy and is not resolved by the ∼0.″1 beam, so the dust disk radius is likely less than 5 au and can be much smaller if the dust continuum is optically thick. If, however, the dust emission is optically thin, then the SR 12 c disk has a comparable dust mass to the circumplanetary disk around PDS 70 c but is about five times lower than that of the ∼12 M Jup free-floating OTS 44. This suggests that disks around bound and unbound planetary-mass objects can span a wide range of masses. The gas mass estimated with an accretion rate of 10 −11 M ☉ yr −1 implies a gas-to-dust ratio higher than 100. If cloud absorption is not significant, a nondetection of 12 CO(3–2) implies a compact gas disk around SR 12 c. Future sensitive observations may detectmore »more PMC disks at 0.88 mm flux densities of ≲100 μ Jy.« less
    Free, publicly-accessible full text available April 28, 2023

    We developed convolutional neural networks (CNNs) to rapidly and directly infer the planet mass from radio dust continuum images. Substructures induced by young planets in protoplanetary discs can be used to infer the potential young planets’ properties. Hydrodynamical simulations have been used to study the relationships between the planet’s properties and these disc features. However, these attempts either fine-tuned numerical simulations to fit one protoplanetary disc at a time, which was time consuming, or azimuthally averaged simulation results to derive some linear relationships between the gap width/depth and the planet mass, which lost information on asymmetric features in discs. To cope with these disadvantages, we developed Planet Gap neural Networks (PGNets) to infer the planet mass from two-dimensional images. We first fit the gridded data in Zhang et al. as a classification problem. Then, we quadrupled the data set by running additional simulations with near-randomly sampled parameters, and derived the planet mass and disc viscosity together as a regression problem. The classification approach can reach an accuracy of 92 per cent, whereas the regression approach can reach 1σ as 0.16 dex for planet mass and 0.23 dex for disc viscosity. We can reproduce the degeneracy scaling α ∝ $M_\mathrm{ p}^3$ found in the linearmore »fitting method, which means that the CNN method can even be used to find degeneracy relationship. The gradient-weighted class activation mapping effectively confirms that PGNets use proper disc features to constrain the planet mass. We provide programs for PGNets and the traditional fitting method from Zhang et al., and discuss each method’s advantages and disadvantages.

    « less
  9. Abstract We present the complete sample of protoplanetary disks from the Gemini- Large Imaging with the Gemini Planet Imager Herbig/T Tauri Survey, which observed bright Herbig Ae/Be stars and T Tauri stars in near-infrared polarized light to search for signatures of disk evolution and ongoing planet formation. The 44 targets were chosen based on their near- and mid-infrared colors, with roughly equal numbers of transitional, pre-transitional, and full disks. Our approach explicitly did not favor well-known, “famous” disks or those observed by the Atacama Large Millimeter/submillimeter Array, resulting in a less-biased sample suitable to probe the major stages of disk evolution during planet formation. Our optimized data reduction allowed polarized flux as low as 0.002% of the stellar light to be detected, and we report polarized scattered light around 80% of our targets. We detected point-like companions for 47% of the targets, including three brown dwarfs (two confirmed, one new), and a new super-Jupiter-mass candidate around V1295 Aql. We searched for correlations between the polarized flux and system parameters, finding a few clear trends: the presence of a companion drastically reduces the polarized flux levels, far-IR excess correlates with polarized flux for nonbinary systems, and systems hosting disks with ringmore »structures have stellar masses <3 M ⊙ . Our sample also included four hot, dusty “FS CMa” systems, and we detected large-scale ( >100 au) scattered light around each, signs of extreme youth for these enigmatic systems. Science-ready images are publicly available through multiple distribution channels using a new FITS file standard that has been jointly developed with members of the Very Large Telescope Spectro-polarimetric High-contrast Exoplanet Research team.« less
    Free, publicly-accessible full text available August 23, 2023
  10. ABSTRACT The core accretion model of giant planet formation has been challenged by the discovery of recycling flows between the planetary envelope and the disc that can slow or stall envelope accretion. We carry out 3D radiation hydrodynamic simulations with an updated opacity compilation to model the proto-Jupiter’s envelope. To isolate the 3D effects of convection and recycling, we simulate both isolated spherical envelopes and envelopes embedded in discs. The envelopes are heated at given rates to achieve steady states, enabling comparisons with 1D models. We vary envelope properties to obtain both radiative and convective solutions. Using a passive scalar, we observe significant mass recycling on the orbital time-scale. For a radiative envelope, recycling can only penetrate from the disc surface until ∼0.1–0.2 planetary Hill radii, while for a convective envelope, the convective motion can ‘dredge up’ the deeper part of the envelope so that the entire convective envelope is recycled efficiently. This recycling, however, has only limited effects on the envelopes’ thermal structure. The radiative envelope embedded in the disc has identical structure as the isolated envelope. The convective envelope has a slightly higher density when it is embedded in the disc. We introduce a modified 1D approach whichmore »can fully reproduce our 3D simulations. With our updated opacity and 1D model, we recompute Jupiter’s envelope accretion with a 10 M⊕ core, and the time-scale to runaway accretion is shorter than the disc lifetime as in prior studies. Finally, we discuss the implications of the efficient recycling on the observed chemical abundances of the planetary atmosphere (especially for super-Earths and mini-Neptunes).« less