skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zou, Dongmian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Abstract. In this paper, we present an ensemble data assimilation paradigm over a Riemannian manifold equipped with the Wasserstein metric. Unlike the Euclidean distance used in classic data assimilation methodologies, the Wasserstein metric can capture the translation and difference between the shapes of square-integrable probability distributions of the background state and observations. This enables us to formally penalize geophysical biases in state space with non-Gaussian distributions. The new approach is applied to dissipative and chaotic evolutionary dynamics, and its potential advantages and limitations are highlighted compared to the classic ensemble data assimilation approaches under systematic errors. 
    more » « less
  3. null (Ed.)
  4. We propose a neural network for unsupervised anomaly detection with a novel robust subspace recovery layer (RSR layer). This layer seeks to extract the underlying subspace from a latent representation of the given data and removes outliers that lie away from this subspace. It is used within an autoencoder. The encoder maps the data into a latent space, from which the RSR layer extracts the subspace. The decoder then smoothly maps back the underlying subspace to a “manifold” close to the original inliers. Inliers and outliers are distinguished according to the distances between the original and mapped positions (small for inliers and large for outliers). Extensive numerical experiments with both image and document datasets demonstrate state-of-the-art precision and recall. 
    more » « less
  5. null (Ed.)
  6. Generative networks have made it possible to generate meaningful signals such as images and texts from simple noise. Recently, generative methods based on GAN and VAE were developed for graphs and graph signals. However, the mathematical properties of these methods are unclear, and training good generative models is difficult. This work proposes a graph generation model that uses a recent adaptation of Mallat's scattering transform to graphs. The proposed model is naturally composed of an encoder and a decoder. The encoder is a Gaussianized graph scattering transform, which is robust to signal and graph manipulation. The decoder is a simple fully connected network that is adapted to specific tasks, such as link prediction, signal generation on graphs and full graph and signal generation. The training of our proposed system is efficient since it is only applied to the decoder and the hardware requirements are moderate. Numerical results demonstrate state-of-the-art performance of the proposed system for both link prediction and graph and signal generation. 
    more » « less