skip to main content


Search for: All records

Creators/Authors contains: "Gardner, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work explores the experiences of administrators supporting teachers in the [redacted] program which emphasizes broadening participation in engineering at the high school level. In order to understand how efforts to broaden participation can leverage multiple levels of the school system, this work sought to identify the experiences of administrators. Two rounds of convenience samples of administrators in public and independent schools occurred in spring and fall of 2022. This recruitment led to two focus groups (with both public and independent school administrators) and a single administrator interview (independent school). During these conversations, administrators were asked to reflect on the implementation of the [redacted] program at their school, their personal experiences with this process, and barriers or suggestions in expanding this program both locally and more broadly. The transcripts of these interviews and focus groups were analyzed using descriptive coding (Saldaña, 2014) by two researchers. The researchers then met and compared codes to ensure inter-rater reliability with a percent agreement above 90%. During this process the codes were categorized and then emergent themes were identified. The findings indicate that administrators have a range of personal experience with implementing this engineering program, and that often these experiences were reported as a benefit to the entire school. For instance, administrators often referred to connections made to local universities by or as a result of the program, which then served as a positive outcome for the school at large. This suggests that a multifaceted approach to implementing engineering courses at the high school level which includes curriculum as well as human connections is seen as a benefit by administrators. Administrators also refer to the coursework and teacher actions as supporting the goal of broadening participation by speaking about specific engineering projects that engage a variety of learners, mostly through the type of project employed within the course. Finally, the administrators identified potential barriers to implementing engineering programs on their campus, with most barriers relating to teacher staffing issues, such as the need to engage in professional development to train these teachers externally. The themes that emerged from these various administrators perspectives provide an understanding of how to approach broadening participation through leveraging the role of administrators and how to encourage communication within the school system to create more access for students both to enroll in the engineering courses and to see a future self within engineering. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  2. Introduction Despite years of research and practice, there remains a need to broaden participation in engineering. The NSF-funded research study [PROGRAM] addresses this issue by providing engineering curricula and professional development for high school teachers. [PROGRAM] also engages in building and maintaining a Community of Practice (CoP). The CoP model allows for strategic partnerships to create lasting connections between high schools and various community partners. Community partners include stakeholders such as school counselors, school administrators, district officials, parents, university liaisons, community liaisons, and industry representatives that cultivate a local ecosystem to support students and teachers in this pre-college engineering education initiative. Since the roles and responsibilities of community partners vary, this paper focuses on one type of partner: university liaisons. Within the CoP, university liaisons voluntarily commit their knowledge and expertise to support high school teachers during professional development and curriculum implementation. Each liaison typically supports up to two high schools. Liaisons also engage with each other via Slack, an online communication platform. Objective Our paper examines how university liaisons engage with the CoP in [PROGRAM]. The goals of this study are to: 1) Capture aspects that are currently viewed as exciting or challenging for university liaisons, and 2) Understand ways in which [PROGAM] could facilitate further involvement of these university liaisons in the CoP. Methods After obtaining IRB approval, we conducted virtual focus groups with five liaisons from distinct universities who work with eight [PROGAM] schools. Two focus groups averaged 60 minutes long; liaisons discussed their relationships with their partner high schools, resources through [PROGRAM], and education and outreach at their universities. The semi-structured format of the focus groups allowed liaisons to respond to each other and elaborate on their thoughts in a casual atmosphere. The focus groups were recorded and two coders are currently analyzing the transcripts. Results Analysis is ongoing. Initial findings suggest that university liaisons enjoy the experience of engaging with high school teachers and students, especially when they can bring students to campus and share their institutions’ engineering programs. As a proposed program change, liaisons are interested in more structure to the CoP. For example, high school teachers currently meet virtually as small groups for scheduled check-ins; university liaisons expressed interest in a similar monthly meeting to discuss their experiences and share resources and recommendations with other liaisons. Conclusions This paper evaluated the perceived experience of university liaisons in a CoP within [PROGRAM]. Findings provide direction on the best way to support current and future liaisons. These results may also be applicable to other programs that aim to cultivate lasting relationships between K-12 educators and postsecondary institutions. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  3. As part of the e4usa curriculum, a MATLAB model has been developed and implemented in order to cultivate engineering and computational thinking skills in high school students. The MATLAB model uses a live script that allows students to interact with sliders and dropdown menus to change parameters on a water filtration model. With computational skills increasingly in demand, the literature suggests that adding computational thinking and coding skills as a new form of literacy is crucial for preparing future engineering professionals. Additionally, to ensure that students are better prepared by the time they reach their post-secondary studies, early exposure to computational thinking skills has valuable implications. In this fundamental paper, we describe outcomes resulting from students' interactions with MATLAB in e4usa. The mathematical model allows the students to analyze the effects of different filtration materials, impurities to be removed, length of the water filter, and the space between particles in their filtration material. Using at first a mathematical model rather than testing physical materials will allow them to learn more about their potential filtration materials so that they may make more informed decisions about which filtration materials they want to select for their design and use in the prototype that they build and test. With that said, we focus on student outcomes in this design activity. We hypothesize that this modeling activity prior to design may reduce the time spent in physical testing as well as the volume of materials consumed. Additionally, we are inquisitive about the impact that it has on the subsequent design activities compared to previous semesters where this lesson was taught, where it was observed that students spend a considerable amount of time trying out different materials. As part of our data, we have collected teacher data from surveys, pre and post-responses about their expectations, attitudes, and perceived value of implementing the MATLAB model in their classrooms, class observation data from at least two schools where we noted the interactions between the teachers and students, and teacher and student focus groups at the end of the semester where we expect to collect richer data from these two groups that will allow us to triangulate data collected from surveys and classroom observations. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  4. Students with disabilities (SWDs) and neurodiverse students are underrepresented at all points along the educational pathway in engineering. One potential entry point for engaging SWDs and broadening future participation in engineering is through the role of stakeholder in engineering design challenges, and specifically during high school, which is a crucial part of the pathway to engineering. High school teachers and students engaged in Engineering for US All (e4usa) have completed several engineering design projects involving SWDs as stakeholders. These projects represent a human-centered approach to engineering that emphasizes a comprehensive understanding of stakeholders. This work in progress will present results from surveys completed by e4usa teachers and students who have engaged in disability-centered engineering design challenges, with SWDs serving as the stakeholder to understand their experiences. Additionally, SWDs serving as stakeholders and those that support them (e.g., special education teachers, paraprofessionals, related service providers, families) will be interviewed about their experiences engaging in their project. Potential implications of the research findings include the impact of engaging SWDs in engineering design, especially as it relates to increased knowledge of general education teachers and students about inclusive practices and supports (e.g., evidence-based practices, alternative communication strategies, prompting). Additionally, the outcomes may contribute to efforts to broaden the participation of SWDs in engineering. Doing so, will help support the e4usa mission, which aims to demystify and democratize the learning and practice of engineering by increasing engineering literacy for all and expand opportunities for those traditionally underserved and marginalized in engineering to pursue careers as engineers and expand the STEM workforce pipeline. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  5. Research prior to 2005 found that no single framework existed that could capture the engineering design process fully or well and benchmark each element of the process to a commonly accepted set of referenced artifacts. Compounding the construction of a stepwise, artifact driven framework is that engineering design is typically practiced over time as a complex and iterative process. For both novice and advanced students, learning and applying the design process is often cumulative, with many informal and formal programmatic opportunities to practice essential elements. The Engineering Design Process Portfolio Scoring Rubric (EDPPSR) was designed to apply to any portfolio that is intended to document an individual or team driven process leading to an original attempt to design a product, process, or method to provide the best and most optimal solution to a genuine and meaningful problem. In essence, the portfolio should be a detailed account or “biography” of a project and the thought processes that inform that project. Besides narrative and explanatory text, entries may include (but need not be limited to) drawings, schematics, photographs, notebook and journal entries, transcripts or summaries of conversations and interviews, and audio/video recordings. Such entries are likely to be necessary in order to convey accurately and completely the complex thought processes behind the planning, implementation, and self-evaluation of the project. The rubric is comprised of four main components, each in turn comprised of three elements. Each element has its own holistic rubric. The process by which the EDPPSR was created gives evidence of the relevance and representativeness of the rubric and helps to establish validity. The EDPPSR model as originally rendered has a strong theoretical foundation as it has been developed by reference to the literature on the steps of the design process through focus groups and through expert review by teachers, faculty and researchers in performance based, portfolio rubrics and assessments. Using the unified construct validity framework, the EDDPSR’s validity was further established through expert reviewers (experts in engineering design) providing evidence supporting the content relevance and representativeness of the EDPPSR in representing the basic process of engineering design. This manuscript offers empirical evidence that supports the use of the EDPPSR model to evaluate student design-based projects in a reliable and valid manner. Intra-class correlation coefficients (ICC) were calculated to determine the inter-rater reliability (IRR) of the rubric. Given the small sample size we also examined confidence intervals (95%) to provide a range of values in which the estimate of inter-reliability is likely contained. 
    more » « less
  6. null (Ed.)
    The impacts of COVID-19 have led to a rapid pivot in the delivery of professional development (PD) for new teachers to [PROGRAM]. [PROGRAM] previously provided a week-long, in-person, intensive PD in the summer for teachers but PD was shifted online to a mixture of synchronous and asynchronous sessions during the summer of 2020. The goal of this work in progress is to present how the [PROGRAM] team adapted teacher PD to establish community among our teachers and between teachers and staff, use this connection to enhance our responsiveness in PD, and deliver the engaging content of the [PROGRAM] curriculum. Teachers engaging remotely in [PROGRAM] activities have led to productive adaptations based on their challenges. The lessons learned reflecting back upon the PD will inform the design, delivery, and content of future [PROGRAM] teacher PDs. It is expected that future PD and professional learning offerings will continue to utilize flexible modalities and novel online tools, while also working to better align to PD standards. 
    more » « less
  7. null (Ed.)
    As our nation’s need for engineering professionals grows, a sharp rise in P-12 engineering education programs and related research has taken place (Brophy, Klein, Portsmore, & Rogers, 2008; Purzer, Strobel, & Cardella, 2014). The associated research has focused primarily on students’ perceptions and motivations, teachers’ beliefs and knowledge, and curricula and program success. The existing research has expanded our understanding of new K-12 engineering curriculum development and teacher professional development efforts, but empirical data remain scarce on how racial and ethnic diversity of student population influences teaching methods, course content, and overall teachers’ experiences. In particular, Hynes et al. (2017) note in their systematic review of P-12 research that little attention has been paid to teachers’ experiences with respect to racially and ethnically diverse engineering classrooms. The growing attention and resources being committed to diversity and inclusion issues (Lichtenstein, Chen, Smith, & Maldonado, 2014; McKenna, Dalal, Anderson, & Ta, 2018; NRC, 2009) underscore the importance of understanding teachers’ experiences with complementary research-based recommendations for how to implement engineering curricula in racially diverse schools to engage all students. Our work examines the experiences of three high school teachers as they teach an introductory engineering course in geographically and distinctly different racially diverse schools across the nation. The study is situated in the context of a new high school level engineering education initiative called Engineering for Us All (E4USA). The National Science Foundation (NSF) funded initiative was launched in 2018 as a partnership among five universities across the nation to ‘demystify’ engineering for high school students and teachers. The program aims to create an all-inclusive high school level engineering course(s), a professional development platform, and a learning community to support student pathways to higher education institutions. An introductory engineering course was developed and professional development was provided to nine high school teachers to instruct and assess engineering learning during the first year of the project. This study investigates participating teachers’ implementation of the course in high schools across the nation to understand the extent to which their experiences vary as a function of student demographic (race, ethnicity, socioeconomic status) and resource level of the school itself. Analysis of these experiences was undertaken using a collective case-study approach (Creswell, 2013) involving in-depth analysis of a limited number of cases “to focus on fewer "subjects," but more "variables" within each subject” (Campbell & Ahrens, 1998, p. 541). This study will document distinct experiences of high school teachers as they teach the E4USA curriculum. Participants were purposively sampled for the cases in order to gather an information-rich data set (Creswell, 2013). The study focuses on three of the nine teachers participating in the first cohort to implement the E4USA curriculum. Teachers were purposefully selected because of the demographic makeup of their students. The participating teachers teach in Arizona, Maryland and Tennessee with predominantly Hispanic, African-American, and Caucasian student bodies, respectively. To better understand similarities and differences among teaching experiences of these teachers, a rich data set is collected consisting of: 1) semi-structured interviews with teachers at multiple stages during the academic year, 2) reflective journal entries shared by the teachers, and 3) multiple observations of classrooms. The interview data will be analyzed with an inductive approach outlined by Miles, Huberman, and Saldaña (2014). All teachers’ interview transcripts will be coded together to identify common themes across participants. Participants’ reflections will be analyzed similarly, seeking to characterize their experiences. Observation notes will be used to triangulate the findings. Descriptions for each case will be written emphasizing the aspects that relate to the identified themes. Finally, we will look for commonalities and differences across cases. The results section will describe the cases at the individual participant level followed by a cross-case analysis. This study takes into consideration how high school teachers’ experiences could be an important tool to gain insight into engineering education problems at the P-12 level. Each case will provide insights into how student body diversity impacts teachers’ pedagogy and experiences. The cases illustrate “multiple truths” (Arghode, 2012) with regard to high school level engineering teaching and embody diversity from the perspective of high school teachers. We will highlight themes across cases in the context of frameworks that represent teacher experience conceptualizing race, ethnicity, and diversity of students. We will also present salient features from each case that connect to potential recommendations for advancing P-12 engineering education efforts. These findings will impact how diversity support is practiced at the high school level and will demonstrate specific novel curricular and pedagogical approaches in engineering education to advance P-12 mentoring efforts. 
    more » « less
  8. null (Ed.)
    Despite numerous calls to increase representation of women and minorities, the engineering education system is still challenged to be more inclusive of women and underrepresented minorities. Scholars have suggested that the imbalance is largely related to sociocultural factors and prevalent stereotypes and implicit biases. This study investigated how high school teachers characterize engineering stereotypes, stereotype threat, and implicit biases, and conceive their roles and responsibilities amid calls for inclusivity in the field. Data was collected through focus group interviews during a professional development effort for high school teachers. Thematic analysis revealed teacher perspectives of long-standing issues affecting diversity in engineering especially in the frameworks of social culture. The study has implications for research as well as practice by providing insight into stereotype threats and implicit biases from the K-12 teacher angle and laying out grass roots solutions at the classroom level. 
    more » « less
  9. The Bureau of Statistics identified an urgent demand for science, technology, engineering, and mathematics (STEM) professionals in the coming years. In order to meet this demand, the number of students graduating with STEM degrees in the United States needs to increase by 34% annually [1]. Engineering for US All (E4USA): A National Pilot Program for High School Engineering Course and Database is a NSF-funded first-of-its-kind initiative designed to address this national need. The E4USA project aims to make engineering more inclusive and accessible to underrepresented minorities, while increasing racial, ethnic, and gender representation in higher education and the workforce. The “for us all” mission of E4USA encompasses both students and educators. The demand for engineering educators has increased, but relying on practicing engineers to switch careers and enter teacher preparation programs has been insufficient [2, 3, 4]. This has led schools to turn to educators with limited training in engineering, which could potentially have a significant national impact on student engineering education [5, 6, 7]. Part of the E4USA pilot year mission has been to welcome educators with varying degrees of experience in industry and teaching. Paramount to E4USA was the construction of professional development (PD) experiences and a community of practice that would prepare and support teachers with varying degrees of engineering training instruction as they implemented the yearlong course. The perspectives of four out of nine educators were examined during a weeklong, intensive E4USA PD. Two of four educators were considered ‘novices’; one with a background in music and the other in history. The remaining two educators were deemed ‘veterans’ with a total of 15 years of experience as engineers and more than 20 years as engineering educators. Data sources consist of focus groups, surveys, and artifacts created during the PD (e.g., educators’ responses to reflection prompts and letters written to welcome the next cohort). Focus group data is currently being analyzed using inductive coding and the constant comparative method in order to identify emergent themes that speak to the past experience or inexperience of educators with engineering. Artifacts were used to: 1) Triangulate the findings generated from the analysis of focus group, and 2) Further understand how the veteran educators supported the novice educators. We will also use quantitative survey data to examine descriptive statistics, observed score bivariate correlations, and differences in mean scores across novices and veterans to further examine potential common and unique experiences for these educators. The results aim to highlight how the inclusion of educators with a broad spectrum of past experiences with engineering and engineering education can increase educators’ empathy towards students who may be equally hesitant about engineering. The findings from this study are expected to result in implications for how PD and a community of practice may be developed to allow for reciprocal support and mentoring. Results will inform future efforts of E4USA and aim to change the structure of high school engineering education nationwide. 
    more » « less