skip to main content


Search for: All records

Creators/Authors contains: "Huang, Jia-Bin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The potential impact of autonomous robots on everyday life is evident in emerging applications such as precision agriculture, search and rescue, and infrastructure inspection. However, such applications necessitate operation in unknown and unstructured environments with a broad and sophisticated set of objectives, all under strict computation and power limitations. We therefore argue that the computational kernels enabling robotic autonomy must bescheduledandoptimizedto guarantee timely and correct behavior, while allowing for reconfiguration of scheduling parameters at runtime. In this paper, we consider a necessary first step towards this goal ofcomputational awarenessin autonomous robots: an empirical study of a base set of computational kernels from the resource management perspective. Specifically, we conduct a data-driven study of the timing, power, and memory performance of kernels for localization and mapping, path planning, task allocation, depth estimation, and optical flow, across three embedded computing platforms. We profile and analyze these kernels to provide insight into scheduling and dynamic resource management for computation-aware autonomous robots. Notably, our results show that there is a correlation of kernel performance with a robot’s operational environment, justifying the notion of computation-aware robots and why our work is a crucial step towards this goal.

     
    more » « less
  2. We are developing a system for long term Semi-Automated Rehabilitation At the Home (SARAH) that relies on low-cost and unobtrusive video-based sensing. We present a cyber-human methodology used by the SARAH system for automated assessment of upper extremity stroke rehabilitation at the home. We propose a hierarchical model for automatically segmenting stroke survivor's movements and generating training task performance assessment scores during rehabilitation. The hierarchical model fuses expert therapist knowledge-based approaches with data-driven techniques. The expert knowledge is more observable in the higher layers of the hierarchy (task and segment) and therefore more accessible to algorithms incorporating high level constraints relating to activity structure (i.e., type and order of segments per task). We utilize an HMM and a Decision Tree model to connect these high level priors to data driven analysis. The lower layers (RGB images and raw kinematics) need to be addressed primarily through data driven techniques. We use a transformer based architecture operating on low-level action features (tracking of individual body joints and objects) and a Multi-Stage Temporal Convolutional Network(MS-TCN) operating on raw RGB images. We develop a sequence combining these complimentary algorithms effectively, thus encoding the information from different layers of the movement hierarchy. Through this combination, we produce a robust segmentation and task assessment results on noisy, variable and limited data, which is characteristic of low cost video capture of rehabilitation at the home. Our proposed approach achieves 85% accuracy in per-frame labeling, 99% accuracy in segment classification and 93% accuracy in task completion assessment. Although the methodology proposed in this paper applies to upper extremity rehabilitation using the SARAH system, it can potentially be used, with minor alterations, to assist automation in many other movement rehabilitation contexts (i.e., lower extremity training for neurological accidents). 
    more » « less
  3. Monocular visual odometry (VO) suffers severely from error accumulation during frame-to-frame pose estimation. In this paper, we present a self-supervised learning method for VO with special consideration for consistency over longer sequences. To this end, we model the long-term dependency in pose prediction using a pose network that features a two-layer convolutional LSTM module. We train the networks with purely self-supervised losses, including a cycle consistency loss that mimics the loop closure module in geometric VO. Inspired by prior geometric systems, we allow the networks to see beyond a small temporal window during training, through a novel a loss that incorporates temporally distant (e.g., O(100)) frames. Given GPU memory constraints, we propose a stage-wise training mechanism, where the first stage operates in a local time window and the second stage refines the poses with a "global" loss given the first stage features. We demonstrate competitive results on several standard VO datasets, including KITTI and TUM RGB-D. 
    more » « less
  4. We address the problem of human action classification in drone videos. Due to the high cost of capturing and labeling large-scale drone videos with diverse actions, we present unsupervised and semi-supervised domain adaptation approaches that leverage both the existing fully annotated action recognition datasets and unannotated (or only a few annotated) videos from drones. To study the emerging problem of drone-based action recognition, we create a new dataset, NEC-DRONE, containing 5,250 videos to evaluate the task. We tackle both problem settings with 1) same and 2) different action label sets for the source (e.g., Kinectics dataset) and target domains (drone videos). We present a combination of video and instance-based adaptation methods, paired with either a classifier or an embedding-based framework to transfer the knowledge from source to target. Our results show that the proposed adaptation approach substantially improves the performance on these challenging and practical tasks. We further demonstrate the applicability of our method for learning cross-view action recognition on the Charades-Ego dataset. We provide qualitative analysis to understand the behaviors of our approaches. 
    more » « less
  5. Few-shot classification aims to recognize novel categories with only few labeled images in each class. Existing metric-based few-shot classification algorithms predict categories by comparing the feature embeddings of query images with those from a few labeled images (support examples) using a learned metric function. While promising performance has been demonstrated, these methods often fail to generalize to unseen domains due to large discrepancy of the feature distribution across domains. In this work, we address the problem of few-shot classification under domain shifts for metric-based methods. Our core idea is to use feature-wise transformation layers for augmenting the image features using affine transforms to simulate various feature distributions under different domains in the training stage. To capture variations of the feature distributions under different domains, we further apply a learning-to-learn approach to search for the hyper-parameters of the feature-wise transformation layers. We conduct extensive experiments and ablation studies under the domain generalization setting using five few-shot classification datasets: mini-ImageNet, CUB, Cars, Places, and Plantae. Experimental results demonstrate that the proposed feature-wise transformation layer is applicable to various metric-based models, and provides consistent improvements on the few-shot classification performance under domain shift. 
    more » « less
  6. Human activities often occur in specific scene contexts, e.g. playing basketball on a basketball court. Training a model using existing video datasets thus inevitably captures and leverages such bias (instead of using the actual discriminative cues). The learned representation may not generalize well to new action classes or different tasks. In this paper, we propose to mitigate scene bias for video representation learning. Specifically, we augment the standard cross-entropy loss for action classification with 1) an adversarial loss for scene types and 2) a human mask confusion loss for videos where the human actors are masked out. These two losses encourage learning representations that are unable to predict the scene types and the correct actions when there is no evidence. We validate the effectiveness of our method by transferring our pre-trained model to three different tasks, including action classification, temporal localization, and spatio-temporal action detection. Our results show consistent improvement over the baseline model without debiasing. 
    more » « less
  7. While deep learning models have achieved unprecedented success in various domains, there is also a growing concern of adversarial attacks against related applications. Recent results show that by adding a small amount of perturbations to an image (imperceptible to humans), the resulting adversarial examples can force a classifier to make targeted mistakes. So far, most existing works focus on crafting adversarial examples in the digital domain, while limited efforts have been devoted to understanding the physical domain attacks. In this work, we explore the feasibility of generating robust adversarial examples that remain effective in the physical domain. Our core idea is to use an image-to-image translation network to simulate the digital-to-physical transformation process for generating robust adversarial examples. To validate our method, we conduct a large-scale physical-domain experiment, which involves manually taking more than 3000 physical domain photos. The results show that our method outperforms existing ones by a large margin and demonstrates a high level of robustness and transferability. 
    more » « less
  8. We present an unsupervised learning framework for simultaneously training single-view depth prediction and optical flow estimation models using unlabeled video sequences. Existing unsupervised methods often exploit brightness constancy and spatial smoothness priors to train depth or flow models. In this paper, we propose to leverage geometric consistency as additional supervisory signals. Our core idea is that for rigid regions we can use the predicted scene depth and camera motion to synthesize 2D optical flow by backprojecting the induced 3D scene flow. The discrepancy between the rigid flow (from depth prediction and camera motion) and the estimated flow (from optical flow model) allows us to impose a cross-task consistency loss. While all the networks are jointly optimized during training, they can be applied independently at test time. Extensive experiments demonstrate that our depth and flow models compare favorably with state-of-the-art unsupervised methods. 
    more » « less