By discretizing an argument of Kislyakov, Naor and Schechtman proved that the 1-Wasserstein metric over the planar grid has -distortion bounded below by a constant multiple of . We provide a new “dimensionality” interpretation of Kislyakov’s argument, showing that if is a sequence of graphs whose isoperimetric dimension and Lipschitz-spectral dimension equal a common number , then the 1-Wasserstein metric over has -distortion bounded below by a constant multiple of . We proceed to compute these dimensions for -powers of certain graphs. In particular, we get that the sequence of diamond graphs has isoperimetric dimension and Lipschitz-spectral dimension equal to 2, obtaining as a corollary that the 1-Wasserstein metric over has -distortion bounded below by a constant multiple of . This answers a question of Dilworth, Kutzarova, and Ostrovskii and exhibits only the third sequence of -embeddable graphs whose sequence of 1-Wasserstein metrics is not -embeddable.
more »
« less
The Classification of Subfactors with Index at Most 5\frac{1}4
Subfactor standard invariants encode quantum symmetries. The small index subfactor classification program has been a rich source of interesting quantum symmetries. We give the complete classification of subfactor standard invariants to index , which includes , the first interesting composite index.
more »
« less
- PAR ID:
- 10479966
- Publisher / Repository:
- American Mathematical Society
- Date Published:
- Journal Name:
- Memoirs of the American Mathematical Society
- Volume:
- 284
- Issue:
- 1405
- ISSN:
- 0065-9266
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We say a null-homologous knot in a -manifold has Property G, if the Thurston norm and fiberedness of the complement of is preserved under the zero surgery on . In this paper, we will show that, if the smooth -genus of (in a certain homology class) in , where is a rational homology sphere, is smaller than the Seifert genus of , then has Property G. When the smooth -genus is , can be taken to be any closed, oriented -manifold.more » « less
-
If is an ideal in a Gorenstein ring , and is Cohen-Macaulay, then the same is true for any linked ideal ; but such statements hold for residual intersections of higher codimension only under restrictive hypotheses, not satisfied even by ideals as simple as the ideal of minors of a generic matrix when . In this paper we initiate the study of a different sort of Cohen-Macaulay property that holds for certain general residual intersections of the maximal (interesting) codimension, one less than the analytic spread of . For example, suppose that is the residual intersection of by general quadratic forms in . In this situation we analyze and show that is a self-dual maximal Cohen-Macaulay -module with linear free resolution over . The technical heart of the paper is a result about ideals of analytic spread 1 whose high powers are linearly presented.more » « less
-
Building on Mazur’s 1978 work on prime degree isogenies, Kenku determined in 1981 all possible cyclic isogenies of elliptic curves over . Although more than 40 years have passed, the determination of cyclic isogenies of elliptic curves over a single other number field has hitherto not been realised. In this paper we develop a procedure to assist in establishing such a determination for a given quadratic field. Executing this procedure on all quadratic fields with we obtain, conditional on the Generalised Riemann Hypothesis, the determination of cyclic isogenies of elliptic curves over quadratic fields, including and . To make this procedure work, we determine all of the finitely many quadratic points on the modular curves and , which may be of independent interest.more » « less
-
We consider minimizing harmonic maps from into a closed Riemannian manifold and prove: 1. an extension to of Almgren and Lieb’s linear law. That is, if the fundamental group of the target manifold is finite, we have\[ \]2. an extension of Hardt and Lin’s stability theorem. Namely, assuming that the target manifold is we obtain that the singular set of is stable under small -perturbations of the boundary data. In dimension both results are shown to hold with weaker hypotheses, i.e., only assuming that the trace of our map lies in the fractional space with and satisfying . We also discuss sharpness.more » « less
An official website of the United States government

