skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Classification of Subfactors with Index at Most 5\frac{1}4
Subfactor standard invariants encode quantum symmetries. The small index subfactor classification program has been a rich source of interesting quantum symmetries. We give the complete classification of subfactor standard invariants to index 5 1 4 5\frac {1}{4} , which includes 3 + 5 3+\sqrt {5} , the first interesting composite index.  more » « less
Award ID(s):
1654159 1655912 1500387
PAR ID:
10479966
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Mathematical Society
Date Published:
Journal Name:
Memoirs of the American Mathematical Society
Volume:
284
Issue:
1405
ISSN:
0065-9266
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. By discretizing an argument of Kislyakov, Naor and Schechtman proved that the 1-Wasserstein metric over the planar grid { 0 , 1 , …<#comment/> , n } 2 \{0,1,\dots , n\}^2 has L 1 L_1 -distortion bounded below by a constant multiple of log ⁡<#comment/> n \sqrt {\log n} . We provide a new “dimensionality” interpretation of Kislyakov’s argument, showing that if { G n } n = 1 ∞<#comment/> \{G_n\}_{n=1}^\infty is a sequence of graphs whose isoperimetric dimension and Lipschitz-spectral dimension equal a common number δ<#comment/> ∈<#comment/> [ 2 , ∞<#comment/> ) \delta \in [2,\infty ) , then the 1-Wasserstein metric over G n G_n has L 1 L_1 -distortion bounded below by a constant multiple of ( log ⁡<#comment/> | G n | ) 1 δ<#comment/> (\log |G_n|)^{\frac {1}{\delta }} . We proceed to compute these dimensions for ⊘<#comment/> \oslash -powers of certain graphs. In particular, we get that the sequence of diamond graphs { D n } n = 1 ∞<#comment/> \{\mathsf {D}_n\}_{n=1}^\infty has isoperimetric dimension and Lipschitz-spectral dimension equal to 2, obtaining as a corollary that the 1-Wasserstein metric over D n \mathsf {D}_n has L 1 L_1 -distortion bounded below by a constant multiple of log ⁡<#comment/> | D n | \sqrt {\log | \mathsf {D}_n|} . This answers a question of Dilworth, Kutzarova, and Ostrovskii and exhibits only the third sequence of L 1 L_1 -embeddable graphs whose sequence of 1-Wasserstein metrics is not L 1 L_1 -embeddable. 
    more » « less
  2. We say a null-homologous knot K K in a 3 3 -manifold Y Y has Property G, if the Thurston norm and fiberedness of the complement of K K is preserved under the zero surgery on K K . In this paper, we will show that, if the smooth 4 4 -genus of K ×<#comment/> { 0 } K\times \{0\} (in a certain homology class) in ( Y ×<#comment/> [ 0 , 1 ] ) #<#comment/> N C P 2 ¯<#comment/> (Y\times [0,1])\#N\overline {\mathbb CP^2} , where Y Y is a rational homology sphere, is smaller than the Seifert genus of K K , then K K has Property G. When the smooth 4 4 -genus is 0 0 , Y Y can be taken to be any closed, oriented 3 3 -manifold. 
    more » « less
  3. If I I is an ideal in a Gorenstein ring S S , and S / I S/I is Cohen-Macaulay, then the same is true for any linked ideal I I’ ; but such statements hold for residual intersections of higher codimension only under restrictive hypotheses, not satisfied even by ideals as simple as the ideal L n L_{n} of minors of a generic 2 ×<#comment/> n 2 \times n matrix when n > 3 n>3 . In this paper we initiate the study of a different sort of Cohen-Macaulay property that holds for certain general residual intersections of the maximal (interesting) codimension, one less than the analytic spread of I I . For example, suppose that K K is the residual intersection of L n L_{n} by 2 n −<#comment/> 4 2n-4 general quadratic forms in L n L_{n} . In this situation we analyze S / K S/K and show that I n −<#comment/> 3 ( S / K ) I^{n-3}(S/K) is a self-dual maximal Cohen-Macaulay S / K S/K -module with linear free resolution over S S . The technical heart of the paper is a result about ideals of analytic spread 1 whose high powers are linearly presented. 
    more » « less
  4. Building on Mazur’s 1978 work on prime degree isogenies, Kenku determined in 1981 all possible cyclic isogenies of elliptic curves over Q \mathbb {Q} . Although more than 40 years have passed, the determination of cyclic isogenies of elliptic curves over a single other number field has hitherto not been realised. In this paper we develop a procedure to assist in establishing such a determination for a given quadratic field. Executing this procedure on all quadratic fields Q ( d ) \mathbb {Q}(\sqrt {d}) with | d | > 10 4 |d| > 10^4 we obtain, conditional on the Generalised Riemann Hypothesis, the determination of cyclic isogenies of elliptic curves over 19 19 quadratic fields, including Q ( 213 ) \mathbb {Q}(\sqrt {213}) and Q ( −<#comment/> 2289 ) \mathbb {Q}(\sqrt {-2289}) . To make this procedure work, we determine all of the finitely many quadratic points on the modular curves X 0 ( 125 ) X_0(125) and X 0 ( 169 ) X_0(169) , which may be of independent interest. 
    more » « less
  5. We show that for primes N , p ≥<#comment/> 5 N, p \geq 5 with N ≡<#comment/> −<#comment/> 1 mod p N \equiv -1 \bmod p , the class number of Q ( N 1 / p ) \mathbb {Q}(N^{1/p}) is divisible by p p . Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that when N ≡<#comment/> −<#comment/> 1 mod p N \equiv -1 \bmod p , there is always a cusp form of weight 2 2 and level Γ<#comment/> 0 ( N 2 ) \Gamma _0(N^2) whose ℓ<#comment/> \ell th Fourier coefficient is congruent to ℓ<#comment/> + 1 \ell + 1 modulo a prime above p p , for all primes ℓ<#comment/> \ell . We use the Galois representation of such a cusp form to explicitly construct an unramified degree- p p extension of Q ( N 1 / p ) \mathbb {Q}(N^{1/p})
    more » « less