Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Silva, S; Paquete, L (Ed.)Coevolving teams of agents promises effective solutions for many coordination tasks such as search and rescue missions or deep ocean exploration. Good team performance in such domains generally relies on agents discovering complex joint policies, which is particularly difficult when the fitness functions are sparse (where many joint policies return the same or even zero fitness values). In this paper, we introduce Novelty Seeking Multiagent Evolutionary Reinforcement Learning (NS-MERL), which enables agents to more efficiently explore their joint strategy space. The key insight of NS-MERL is to promote good exploratory behaviors for individual agents using a dense, novelty-based fitness function. Though the overall team-level performance is still evaluated via a sparse fitness function, agents using NS-MERL more efficiently explore their joint action space and more readily discover good joint policies. Our results in complex coordination tasks show that teams of agents trained with NS-MERL perform significantly better than agents trained solely with task-specific fitnesses.more » « less
-
Agmon, N; An, B; Ricci, A; Yeoh, W. (Ed.)In multiagent systems that require coordination, agents must learn diverse policies that enable them to achieve their individual and team objectives. Multiagent Quality-Diversity methods partially address this problem by filtering the joint space of policies to smaller sub-spaces that make the diversification of agent policies tractable. However, in teams of asymmetric agents (agents with different objectives and capabilities), the search for diversity is primarily driven by the need to find policies that will allow agents to assume complementary roles required to work together in teams. This work introduces Asymmetric Island Model (AIM), a multiagent framework that enables populations of asymmetric agents to learn diverse complementary policies that foster teamwork via dynamic population size allocation on a wide variety of team tasks. The key insight of AIM is that the competitive pressure arising from the distribution of policies on different team-wide tasks drives the agents to explore regions of the policy space that yield specializations that generalize across tasks. Simulation results on multiple variations of a remote habitat problem highlight the strength of AIM in discovering robust synergies that allow agents to operate near-optimally in response to the changing team composition and policies of other agents.more » « less
-
Diversity in behaviors is instrumental for robust team performance in many multiagent tasks which require agents to coordinate. Unfortunately, exhaustive search through the agents’ behavior spaces is often intractable. This paper introduces Behavior Exploration for Heterogeneous Teams (BEHT), a multi-level learning framework that enables agents to progressively explore regions of the behavior space that promote team coordination on diverse goals. By combining diversity search to maximize agent-specific rewards and evolutionary optimization to maximize the team-based fitness, our method effectively filters regions of the behavior space that are conducive to agent coordination. We demonstrate the diverse behaviors and synergies that are method allows agents to learn on a multiagent exploration problem.more » « less
-
null (Ed.)Cooperative Co-evolutionary Algorithms effectively train policies in multiagent systems with a single, statically defined team. However, many real-world problems, such as search and rescue, require agents to operate in multiple teams. When the structure of the team changes, these policies show reduced performance as they were trained to cooperate with only one team. In this work, we solve the cooperation problem by training agents to fill the needs of an arbitrary team, thereby gaining the ability to support a large variety of teams. We introduce Ad hoc Teaming Through Evolution (ATTE) which evolves a limited number of policy types using fitness aggregation across multiple teams. ATTE leverages agent types to reduce the dimensionality of the interaction search space, while fitness aggregation across teams selects for more adaptive policies. In a simulated multi-robot exploration task, ATTE is able to learn policies that are effective in a variety of teaming schemes, improving the performance of CCEA by a factor of up to five times.more » « less
-
null (Ed.)In many real-world multiagent systems, agents must learn diverse tasks and coordinate with other agents. This paper introduces a method to allow heterogeneous agents to specialize and only learn complementary divergent behaviors needed for coordination in a shared environment. We use a hierarchical decomposition of diversity search and fitness optimization to allow agents to speciate and learn diverse temporally extended actions. Within an agent population, diversity in niches is favored. Agents within a niche compete for optimizing the higher level coordination task. Experimental results in a multiagent rover exploration task demonstrate the diversity of acquired agent behavior that promotes coordination.more » « less
-
null (Ed.)Long term robotic deployments are well described by sparse fitness functions, which are hard to learn from and adapt to. This work introduces Adaptive Multi-Fitness Learning (A-MFL), which augments the structure of Multi-Fitness Learning (MFL) [9] by injecting new behaviors into the agents as the environment changes. A-MFL not only improves system performance in dynamic environments, but also avoids undesirable, unforeseen side-effects of new behaviors by localizing where the new behaviors are used. On a simulated multi-robot problem, A-MFL provides up to 90% improvement over MFL, and 100% over a one-step evolutionary approach.more » « less
An official website of the United States government

Full Text Available