Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Exploiting Long-Distance Interactions and Tolerating Atom Loss in Neutral Atom Quantum ArchitecturesQuantum technologies currently struggle to scale beyond moderate scale prototypes and are unable to execute even reasonably sized programs due to prohibitive gate error rates or coherence times. Many software approaches rely on heavy compiler optimization to squeeze extra value from noisy machines but are fundamentally limited by hardware. Alone, these software approaches help to maximize the use of available hardware but cannot overcome the inherent limitations posed by the underlying technology. An alternative approach is to explore the use of new, though potentially less developed, technology as a path towards scalability. In this work we evaluate the advantages and disadvantages of a Neutral Atom (NA) architecture. NA systems offer several promising advantages such as long range interactions and native multiqubit gates which reduce communication overhead, overall gate count, and depth for compiled programs. Long range interactions, however, impede parallelism with restriction zones surrounding interacting qubit pairs. We extend current compiler methods to maximize the benefit of these advantages and minimize the cost. Furthermore, atoms in an NA device have the possibility to randomly be lost over the course of program execution which is extremely detrimental to total program execution time as atom arrays are slow to load. When the compiled program is no longer compatible with the underlying topology, we need a fast and efficient coping mechanism. We propose hardware and compiler methods to increase system resilience to atom loss dramatically reducing total computation time by circumventing complete reloads or full recompilation every cycle.more » « less
-
null (Ed.)We establish finite-sample guarantees for a polynomial-time algorithm for learning a nonlinear, nonparametric directed acyclic graphical (DAG) model from data. The analysis is model-free and does not assume linearity, additivity, independent noise, or faithfulness. Instead, we impose a condition on the residual variances that is closely related to previous work on linear models with equal variances. Compared to an optimal algorithm with oracle knowledge of the variable ordering, the additional cost of the algorithm is linear in the dimension d and the number of samples n. Finally, we compare the proposed algorithm to existing approaches in a simulation study.more » « less