skip to main content


Title: Exploiting Long-Distance Interactions and Tolerating Atom Loss in Neutral Atom Quantum Architectures
Quantum technologies currently struggle to scale beyond moderate scale prototypes and are unable to execute even reasonably sized programs due to prohibitive gate error rates or coherence times. Many software approaches rely on heavy compiler optimization to squeeze extra value from noisy machines but are fundamentally limited by hardware. Alone, these software approaches help to maximize the use of available hardware but cannot overcome the inherent limitations posed by the underlying technology. An alternative approach is to explore the use of new, though potentially less developed, technology as a path towards scalability. In this work we evaluate the advantages and disadvantages of a Neutral Atom (NA) architecture. NA systems offer several promising advantages such as long range interactions and native multiqubit gates which reduce communication overhead, overall gate count, and depth for compiled programs. Long range interactions, however, impede parallelism with restriction zones surrounding interacting qubit pairs. We extend current compiler methods to maximize the benefit of these advantages and minimize the cost. Furthermore, atoms in an NA device have the possibility to randomly be lost over the course of program execution which is extremely detrimental to total program execution time as atom arrays are slow to load. When the compiled program is no longer compatible with the underlying topology, we need a fast and efficient coping mechanism. We propose hardware and compiler methods to increase system resilience to atom loss dramatically reducing total computation time by circumventing complete reloads or full recompilation every cycle.  more » « less
Award ID(s):
2016136 1764039 1823032 1730449
NSF-PAR ID:
10274395
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ACM/IEEE Annual International Symposium on Computer Architecture
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In recent years, Quantum Computing (QC) has progressed to the point where small working prototypes are available for use. Termed Noisy Intermediate-Scale Quantum (NISQ) computers, these prototypes are too small for large benchmarks or even for Quantum Error Correction, but they do have sufficient resources to run small benchmarks, particularly if compiled with optimizations to make use of scarce qubits and limited operation counts and coherence times. QC has not yet, however, settled on a particular preferred device implementation technology, and indeed different NISQ prototypes implement qubits with very different physical approaches and therefore widely-varying device and machine characteristics. Our work performs a full-stack, benchmark-driven hardware-software analysis of QC systems. We evaluate QC architectural possibilities, software-visible gates, and software optimizations to tackle fundamental design questions about gate set choices, communication topology, the factors affecting benchmark performance and compiler optimizations. In order to answer key cross-technology and cross-platform design questions, our work has built the first top-to-bottom toolflow to target different qubit device technologies, including superconducting and trapped ion qubits which are the current QC front-runners. We use our toolflow, TriQ, to conduct real-system measurements on 7 running QC prototypes from 3 different groups, IBM, Rigetti, and University of Maryland. From these real-system experiences at QC's hardware-software interface, we make observations about native and software-visible gates for different QC technologies, communication topologies, and the value of noise-aware compilation even on lower-noise platforms. This is the largest cross-platform real-system QC study performed thus far; its results have the potential to inform both QC device and compiler design going forward. 
    more » « less
  2. Trapped ions (TIs) are a leading candidate for building Noisy Intermediate-Scale Quantum (NISQ) hardware. TI qubits have fundamental advantages over other technologies, featuring high qubit quality, coherence time, and qubit connectivity. However, current TI systems are small in size and typically use a single trap architecture, which has fundamental scalability limitations. To progress toward the next major milestone of 50--100 qubit TI devices, a modular architecture termed the Quantum Charge Coupled Device (QCCD) has been proposed. In a QCCD-based TI device, small traps are connected through ion shuttling. While the basic hardware components for such devices have been demonstrated, building a 50--100 qubit system is challenging because of a wide range of design possibilities for trap sizing, communication topology, and gate implementations and the need to match diverse application resource requirements. Toward realizing QCCD-based TI systems with 50--100 qubits, we perform an extensive application-driven architectural study evaluating the key design choices of trap sizing, communication topology, and operation implementation methods. To enable our study, we built a design toolflow, which takes a QCCD architecture's parameters as input, along with a set of applications and realistic hardware performance models. Our toolflow maps the applications onto the target device and simulates their execution to compute metrics such as application run time, reliability, and device noise rates. Using six applications and several hardware design points, we show that trap sizing and communication topology choices can impact application reliability by up to three orders of magnitude. Microarchitectural gate implementation choices influence reliability by another order of magnitude. From these studies, we provide concrete recommendations to tune these choices to achieve highly reliable and performant application executions. With industry and academic efforts underway to build TI devices with 50-100 qubits, our insights have the potential to influence QC hardware in the near future and accelerate the progress toward practical QC systems. 
    more » « less
  3. Over the past few years, several quantum software stacks (QSS) have been developed in response to rapid hardware advances in quantum computing. A QSS includes a quantum programming language, an optimizing compiler that translates a quantum algorithm written in a high-level language into quantum gate instructions, a quantum simulator that emulates these instructions on a classical device, and a software controller that sends analog signals to a very expensive quantum hardware based on quantum circuits. In comparison to traditional compilers and architecture simulators, QSSes are difficult to tests due to the probabilistic nature of results, the lack of clear hardware specifications, and quantum programming complexity. This work devises a novel differential testing approach for QSSes, named QDIFF with three major innovations: (1) We generate input programs to be tested via semantics-preserving, source to source transformation to explore program variants. (2) We speed up differential testing by filtering out quantum circuits that are not worthwhile to execute on quantum hardware by analyzing static characteristics such as a circuit depth, 2-gate operations, gate error rates, and T1 relaxation time. (3) We design an extensible equivalence checking mechanism via distribution comparison functions such as Kolmogorov-Smirnov test and cross entropy. We evaluate QDiff with three widely-used open source QSSes: Qiskit from IBM, Cirq from Google, and Pyquil from Rigetti. By running QDiff on both real hardware and quantum simulators, we found several critical bugs revealing potential instabilities in these platforms. QDiff's source transformation is effective in producing semantically equivalent yet not-identical circuits (i.e., 34% of trials), and its filtering mechanism can speed up differential testing by 66%. 
    more » « less
  4. Recent trends in software-defined networking have extended network programmability to the data plane. Unfortunately, the chance of introducing bugs increases significantly. Verification can help prevent bugs by assuring that the program does not violate its requirements. Although research on the verification of P4 programs is very active, we still need tools to make easier for programmers to express properties and to rapidly verify complex invariants. In this paper, we leverage assertions and symbolic execution to propose a more general P4 verification approach. Developers annotate P4 programs with assertions expressing general network correctness properties; the result is transformed into C models and all possible paths symbolically executed. We implement a prototype, and use it to show the feasibility of the verification approach. Because symbolic execution does not scale well, we investigate a set of techniques to speed up the process for the specific case of P4 programs. We use the prototype implemented to show the gains provided by three speed up techniques (use of constraints, program slicing, parallelization), and experiment with different compiler optimization choices. We show our tool can uncover a broad range of bugs, and can do it in less than a minute considering various P4 applications. 
    more » « less
  5. Current quantum computers are especially error prone and require high levels of optimization to reduce operation counts and maximize the probability the compiled program will succeed. These computers only support operations decomposed into one- and two-qubit gates and only two-qubit gates between physically connected pairs of qubits. Typical compilers first decompose operations, then route data to connected qubits. We propose a new compiler structure, Orchestrated Trios, that first decomposes to the three-qubit Toffoli, routes the inputs of the higher-level Toffoli operations to groups of nearby qubits, then finishes decomposition to hardware-supported gates. This significantly reduces communication overhead by giving the routing pass access to the higher-level structure of the circuit instead of discarding it. A second benefit is the ability to now select an architecture-tuned Toffoli decomposition such as the 8-CNOT Toffoli for the specific hardware qubits now known after the routing pass. We perform real experiments on IBM Johannesburg showing an average 35% decrease in two-qubit gate count and 23% increase in success rate of a single Toffoli over Qiskit. We additionally compile many near-term benchmark algorithms showing an average 344% increase in (or 4.44x) simulated success rate on the Johannesburg architecture and compare with other architecture types. 
    more » « less