skip to main content


Search for: All records

Award ID contains: 1909365

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Chiappa, Silvia ; Calandra, Roberto (Ed.)
    Langevin Monte Carlo (LMC) is an iterative algorithm used to generate samples from a distribution that is known only up to a normalizing constant. The nonasymptotic dependence of its mixing time on the dimension and target accuracy is understood mainly in the setting of smooth (gradient-Lipschitz) log-densities, a serious limitation for applications in machine learning. In this paper, we remove this limitation, providing polynomial-time convergence guarantees for a variant of LMC in the setting of nonsmooth log-concave distributions. At a high level, our results follow by leveraging the implicit smoothing of the log-density that comes from a small Gaussian perturbation that we add to the iterates of the algorithm and controlling the bias and variance that are induced by this perturbation. 
    more » « less
  3. null (Ed.)
    We undertake a precise study of the asymptotic and non-asymptotic properties of stochastic approximation procedures with Polyak-Ruppert averaging for solving a linear system $\bar{A} \theta = \bar{b}$. When the matrix $\bar{A}$ is Hurwitz, we prove a central limit theorem (CLT) for the averaged iterates with fixed step size and number of iterations going to infinity. The CLT characterizes the exact asymptotic covariance matrix, which is the sum of the classical Polyak-Ruppert covariance and a correction term that scales with the step size. Under assumptions on the tail of the noise distribution, we prove a non-asymptotic concentration inequality whose main term matches the covariance in CLT in any direction, up to universal constants. When the matrix $\bar{A}$ is not Hurwitz but only has non-negative real parts in its eigenvalues, we prove that the averaged LSA procedure actually achieves an $O(1/T)$ rate in mean-squared error. Our results provide a more refined understanding of linear stochastic approximation in both the asymptotic and non-asymptotic settings. We also show various applications of the main results, including the study of momentum-based stochastic gradient methods as well as temporal difference algorithms in reinforcement learning. 
    more » « less
  4. Daumé III, Hal ; Singh, Aarti (Ed.)
    We prove quantitative convergence rates at which discrete Langevin-like processes converge to the invariant distribution of a related stochastic differential equation. We study the setup where the additive noise can be non-Gaussian and state-dependent and the potential function can be non-convex. We show that the key properties of these processes depend on the potential function and the second moment of the additive noise. We apply our theoretical findings to studying the convergence of Stochastic Gradient Descent (SGD) for non-convex problems and corroborate them with experiments using SGD to train deep neural networks on the CIFAR-10 dataset. 
    more » « less