skip to main content


Search for: All records

Award ID contains: 1917630

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    An efficient strategy for addressing individual devices is required to unveil the full potential of memristors for high‐density memory and computing applications. Existing strategies using two‐terminal selectors that are preferable for compact integration have trade‐offs in reduced generality or functional window. A strategy that applies to broad memristors and maintains their full‐range functional window is proposed. This strategy uses a type of unipolar switch featuring a transient relaxation or retention as the selector. The unidirectional current flow in the switch suppresses the sneak‐path current, whereas the transient‐relaxation window is exploited for bidirectional programming. A unipolar volatile memristor with ultralow switching voltage (e.g., <100 mV), constructed from a protein nanowire dielectric harvested fromGeobacter sulfurreducens, is specifically employed as the example switch to highlight the advantages and scalability in the strategy for array integration.

     
    more » « less
  2. Abstract

    Sustainably produced biomaterials can greatly improve the biocompatibility of wearable sensor technologies while reducing the energy and environmental impacts of materials fabrication and disposal. An electronic sensor device in which the sensing element is a thin (≈2 µm) film of electrically conductive protein nanowires harvested from the microbeGeobacter sulfurreducensis developed. The sensor rapidly responds to changes in humidity with high selectivity and sensitivity. The sensor is integrated on a flexible substrate as a wearable device, enabling real‐time monitoring of physiological conditions such as respiration and skin hydration. Noncontact body tracking is demonstrated with an array of sensors that detect a humidity gradient at distance from the skin with high sensitivity. Humidity gradients induce directional charge transport in the protein nanowires films, enabling the production of a current signal without applying an external voltage bias for powerless sensing. These results demonstrate the considerable promise for developing protein nanowire‐based wearable sensor devices.

     
    more » « less
  3. Abstract

    Mechanically guided, 3D assembly has attracted broad interests, owing to its compatibility with planar fabrication techniques and applicability to a diversity of geometries and length scales. Its further development requires the capability of on‐demand reversible shape reconfigurations, desirable for many emerging applications (e.g., responsive metamaterials, soft robotics). Here, the design, fabrication, and modeling of soft electrothermal actuators based on laser‐induced graphene (LIG) are reported and their applications in mechanically guided 3D assembly and human–soft actuators interaction are explored. Over 20 complex 3D architectures are fabricated, including reconfigurable structures that can reshape among three distinct geometries. Also, the structures capable of maintaining 3D shapes at room temperature without the need for any actuation are realized by fabricating LIG actuators at an elevated temperature. Finite element analysis can quantitatively capture key aspects that govern electrothermally controlled shape transformations, thereby providing a reliable tool for rapid design optimization. Furthermore, their applications are explored in human–soft actuators interaction, including elastic metamaterials with human gesture‐controlled bandgap behaviors and soft robotic fingers which can measure electrocardiogram from humans in an on‐demand fashion. Other demonstrations include artificial muscles, which can lift masses that are about 110 times of their weights and biomimetic frog tongues which can prey insects.

     
    more » « less
  4. Abstract Employing renewable materials for fabricating clean energy harvesting devices can further improve sustainability. Microorganisms can be mass produced with renewable feedstocks. Here, we demonstrate that it is possible to engineer microbial biofilms as a cohesive, flexible material for long-term continuous electricity production from evaporating water. Single biofilm sheet (~40 µm thick) serving as the functional component in an electronic device continuously produces power density (~1 μW/cm 2 ) higher than that achieved with thicker engineered materials. The energy output is comparable to that achieved with similar sized biofilms catalyzing current production in microbial fuel cells, without the need for an organic feedstock or maintaining cell viability. The biofilm can be sandwiched between a pair of mesh electrodes for scalable device integration and current production. The devices maintain the energy production in ionic solutions and can be used as skin-patch devices to harvest electricity from sweat and moisture on skin to continuously power wearable devices. Biofilms made from different microbial species show generic current production from water evaporation. These results suggest that we can harness the ubiquity of biofilms in nature as additional sources of biomaterial for evaporation-based electricity generation in diverse aqueous environments. 
    more » « less
  5. A suspended nanowire is used to track both the electrical and mechanical activities in cells. 
    more » « less
  6. Direct laser scribing of molybdenum dioxide is enabled on soft elastomers to build Janus wearables and reshapable devices. 
    more » « less
  7. null (Ed.)
    Abstract Incorporating neuromorphic electronics in bioelectronic interfaces can provide intelligent responsiveness to environments. However, the signal mismatch between the environmental stimuli and driving amplitude in neuromorphic devices has limited the functional versatility and energy sustainability. Here we demonstrate multifunctional, self-sustained neuromorphic interfaces by achieving signal matching at the biological level. The advances rely on the unique properties of microbially produced protein nanowires, which enable both bio-amplitude (e.g., <100 mV) signal processing and energy harvesting from ambient humidity. Integrating protein nanowire-based sensors, energy devices and memristors of bio-amplitude functions yields flexible, self-powered neuromorphic interfaces that can intelligently interpret biologically relevant stimuli for smart responses. These features, coupled with the fact that protein nanowires are a green biomaterial of potential diverse functionalities, take the interfaces a step closer to biological integration. 
    more » « less
  8. null (Ed.)
  9. null (Ed.)