Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available August 13, 2026
- 
            Artificial Intelligence (AI) technologies have become increasingly pervasive in our daily lives. Recent breakthroughs such as large language models (LLMs) are being increasingly used globally to enhance their work methods and boost productivity. However, the advent of these technologies has also brought forth new challenges in the critical area of social cybersecurity. While AI has broadened new frontiers in addressing social issues, such as cyberharassment and cyberbullying, it has also worsened existing social issues such as the generation of hateful content, bias, and demographic prejudices. Although the interplay between AI and social cybersecurity has gained much attention from the research community, very few educational materials have been designed to engage students by integrating AI and socially relevant cybersecurity through an interdisciplinary approach. In this paper, we present our newly designed open-learning platform, which can be used to meet the ever-increasing demand for advanced training in the intersection of AI and social cybersecurity. The designed platform, which consists of hands-on labs and education materials, incorporates the latest research results in AI-based social cybersecurity, such as cyberharassment detection, AI bias and prejudice, and adversarial attacks on AI-powered systems, are implemented using Jupyter Notebook, an open-source interactive computing platform for effective hands-on learning. Through a user study of 201 students from two universities, we demonstrate that students have a better understanding of AI-based social cybersecurity issues and mitigation after doing the labs, and they are enthusiastic about learning to use AI algorithms in addressing social cybersecurity challenges for social good.more » « lessFree, publicly-accessible full text available April 20, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available December 18, 2025
- 
            Trajectory prediction forecasts nearby agents’ moves based on their historical trajectories. Accurate trajectory prediction (or prediction in short) is crucial for autonomous vehicles (AVs). Existing attacks compromise the prediction model of a victim AV by directly manipulating the historical trajectory of an attacker AV, which has limited real-world applicability. This paper, for the first time, explores an indirect attack approach that induces prediction errors via attacks against the perception module of a victim AV. Although it has been shown that physically realizable attacks against LiDAR-based perception are possible by placing a few objects at strategic locations, it is still an open challenge to find an object location from the vast search space in order to launch effective attacks against prediction under varying victim AV velocities. Through analysis, we observe that a prediction model is prone to an attack focusing on a single point in the scene. Consequently, we propose a novel two-stage attack framework to realize the single-point attack. The first stage of predictionside attack efficiently identifies, guided by the distribution of detection results under object-based attacks against perception, the state perturbations for the prediction model that are effective and velocity-insensitive. In the second stage of location matching, we match the feasible object locations with the found state perturbations. Our evaluation using a public autonomous driving dataset shows that our attack causes a collision rate of up to 63% and various hazardous responses of the victim AV. The effectiveness of our attack is also demonstrated on a real testbed car 1. To the best of our knowledge, this study is the first security analysis spanning from LiDARbased perception to prediction in autonomous driving, leading to a realistic attack on prediction. To counteract the proposed attack, potential defenses are discussed.more » « less
- 
            Multi-sensor fusion has been widely used by autonomous vehicles (AVs) to integrate the perception results from different sensing modalities including LiDAR, camera and radar. Despite the rapid development of multi-sensor fusion systems in autonomous driving, their vulnerability to malicious attacks have not been well studied. Although some prior works have studied the attacks against the perception systems of AVs, they only consider a single sensing modality or a camera-LiDAR fusion system, which can not attack the sensor fusion system based on LiDAR, camera, and radar. To fill this research gap, in this paper, we present the first study on the vulnerability of multi-sensor fusion systems that employ LiDAR, camera, and radar. Specifically, we propose a novel attack method that can simultaneously attack all three types of sensing modalities using a single type of adversarial object. The adversarial object can be easily fabricated at low cost, and the proposed attack can be easily performed with high stealthiness and flexibility in practice. Extensive experiments based on a real-world AV testbed show that the proposed attack can continuously hide a target vehicle from the perception system of a victim AV using only two small adversarial objects.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available