A<sc>bstract</sc> We present a complete computation of superstring scattering amplitudes at tree level, for the case of Neveu-Schwarz insertions. Mathematically, this is to say that we determine explicitly the superstring measure on the moduli space$$ {\mathcal{M}}_{0,n,0} $$ of super Riemann surfaces of genus zero withn≥ 3 Neveu-Schwarz punctures. While, of course, an expression for the measure was previously known, we do this from first principles, using the canonically defined super Mumford isomorphism [1]. We thus determine the scattering amplitudes, explicitly in the global coordinates on$$ {\mathcal{M}}_{0,n,0} $$ , without the need for picture changing operators or ghosts, and are also able to determine canonically the value of the coupling constant. Our computation should be viewed as a step towards performing similar analysis on$$ {\mathcal{M}}_{0,0,n} $$ , to derive explicit tree-level scattering amplitudes with Ramond insertions.
more »
« less
Cyclic products of Szegö kernels and spin structure sums. Part I. Hyper-elliptic formulation
A<sc>bstract</sc> The summation over spin structures, which is required to implement the GSO projection in the RNS formulation of superstring theories, often presents a significant impediment to the explicit evaluation of superstring amplitudes. In this paper we discover that, for Riemann surfaces of genus two and even spin structures, a collection of novel identities leads to a dramatic simplification of the spin structure sum. Explicit formulas for an arbitrary number of vertex points are obtained in two steps. First, we show that the spin structure dependence of a cyclic product of Szegö kernels (i.e. Dirac propagators for worldsheet fermions) may be reduced to the spin structure dependence of the four-point function. Of particular importance are certaintrilinear relationsthat we shall define and prove. In a second step, the known expressions for the genus-two even spin structure measure are used to perform the remaining spin structure sums. The dependence of the spin summand on the vertex points is reduced to simple building blocks that can already be identified from the two-point function. The hyper-elliptic formulation of genus-two Riemann surfaces is used to derive these results, and its SL(2,ℂ) covariance is employed to organize the calculations and the structure of the final formulas. The translation of these results into the language of Riemannϑ-functions, and applications to the evaluation of higher-point string amplitudes, are relegated to subsequent companion papers.
more »
« less
- Award ID(s):
- 2209700
- PAR ID:
- 10507699
- Publisher / Repository:
- Springer Link
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2023
- Issue:
- 5
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)A bstract The full two-loop amplitudes for five massless states in Type II and Heterotic superstrings are constructed in terms of convergent integrals over the genus-two moduli space of compact Riemann surfaces and integrals of Green functions and Abelian differentials on the surface. The construction combines elements from the BRST cohomology of the pure spinor formulation and from chiral splitting with the help of loop momenta and homology invariance. The α ′ → 0 limit of the resulting superstring amplitude is shown to be in perfect agreement with the previously known amplitude computed in Type II supergravity. Investigations of the α ′ expansion of the Type II amplitude and comparisons with predictions from S-duality are relegated to a first companion paper. A construction from first principles in the RNS formulation of the genus-two amplitude with five external NS states is relegated to a second companion paper.more » « less
-
A wealth of information on multiloop string amplitudes is encoded in fermionic two-point functions known as Szegö kernels. Here we show that cyclic products of any number of Szegö kernels on a Riemann surface of arbitrary genus may be decomposed into linear combinations of modular tensors on moduli space that carry all the dependence on the spin structure . The -independent coefficients in these combinations carry all the dependence on the marked points and are composed of the integration kernels of higher-genus polylogarithms. We determine the antiholomorphic moduli derivatives of the -dependent modular tensors. Published by the American Physical Society2024more » « less
-
A bstract Modular graph functions (MGFs) are SL(2 , ℤ)-invariant functions on the Poincaré upper half-plane associated with Feynman graphs of a conformal scalar field on a torus. The low-energy expansion of genus-one superstring amplitudes involves suitably regularized integrals of MGFs over the fundamental domain for SL(2 , ℤ). In earlier work, these integrals were evaluated for all MGFs up to two loops and for higher loops up to weight six. These results led to the conjectured uniform transcendentality of the genus-one four-graviton amplitude in Type II superstring theory. In this paper, we explicitly evaluate the integrals of several infinite families of three-loop MGFs and investigate their transcendental structure. Up to weight seven, the structure of the integral of each individual MGF is consistent with the uniform transcendentality of string amplitudes. Starting at weight eight, the transcendental weights obtained for the integrals of individual MGFs are no longer consistent with the uniform transcendentality of string amplitudes. However, in all the cases we examine, the violations of uniform transcendentality take on a special form given by the integrals of triple products of non-holomorphic Eisenstein series. If Type II superstring amplitudes do exhibit uniform transcendentality, then the special combinations of MGFs which enter the amplitudes must be such that these integrals of triple products of Eisenstein series precisely cancel one another. Whether this indeed is the case poses a novel challenge to the conjectured uniform transcendentality of genus-one string amplitudes.more » « less
-
Abstract Riemann surfaces are among the simplest and most basic geometric objects. They appear as key players in many branches of physics, mathematics, and other sciences. Despite their widespread significance, how to compute distances between pairs of points on compact Riemann surfaces is surprisingly unknown, unless the surface is a sphere or a torus. This is because on higher-genus surfaces, the distance formula involves an infimum over infinitely many terms, so it cannot be evaluated in practice. Here we derive a computable distance formula for a broad class of Riemann surfaces. The formula reduces the infimum to a minimum over an explicit set consisting of finitely many terms. We also develop a distance computation algorithm, which cannot be expressed as a formula, but which is more computationally efficient on surfaces with high genuses. We illustrate both the formula and the algorithm in application to generalized Bolza surfaces, which are a particular class of highly symmetric compact Riemann surfaces of any genus greater than 1.more » « less
An official website of the United States government

