Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 13, 2026
-
Free, publicly-accessible full text available April 24, 2026
-
Neural language models (LMs) represent facts about the world described by text. Sometimes these facts derive from training data (in most LMs, a representation of the word banana encodes the fact that bananas are fruits). Sometimes facts derive from input text itself (a representation of the sentence I poured out the bottle encodes the fact that the bottle became empty). We describe REMEDI, a method for learning to map statements in natural language to fact encodings in an LM’s internal representation system. REMEDI encodings can be used as knowledge editors: when added to LM hidden representations, they modify downstream generation to be consistent with new facts. REMEDI encodings may also be used as probes: when compared to LM representations, they reveal which properties LMs already attribute to mentioned entities, in some cases making it possible to predict when LMs will generate outputs that conflict with background knowledge or input text. REMEDI thus links work on probing, prompting, and LM editing, and offers steps toward general tools for fine-grained inspection and control of knowledge in LMs.more » « less
-
We study the problem of modeling a population of agents pursuing unknown goals subject to unknown computational constraints. In standard models of bounded rationality, sub-optimal decision-making is simulated by adding homoscedastic noise to optimal decisions rather than actually simulating constrained inference. In this work, we introduce a latent inference budget model (L-IBM) that models these constraints explicitly, via a latent variable (inferred jointly with a model of agents’ goals) that controls the runtime of an iterative inference algorithm. L-IBMs make it possible to learn agent models using data from diverse populations of suboptimal actors. In three modeling tasks—inferring navigation goals from routes, inferring communicative intents from human utterances, and predicting next moves in human chess games—we show that L-IBMs match or outperforms Boltzmann models of decision-making under uncertainty. Moreover, the inferred inference budgets are themselves meaningful, efficient to compute, and correlated with measures of player skill, partner skill and task difficulty.more » « less
An official website of the United States government

Full Text Available