skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2348159

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 2, 2025
  2. Free, publicly-accessible full text available July 1, 2025
  3. The modeling of the interaction between brain structure and function using deep learning techniques has yielded remarkable success in identifying potential biomarkers for different clinical phenotypes and brain diseases. However, most existing studies focus on one-way mapping, either projecting brain function to brain structure or inversely. This type of unidirectional mapping approach is limited by the fact that it treats the mapping as a one-way task and neglects the intrinsic unity between these two modalities. Moreover, when dealing with the same biological brain, mapping from structure to function and from function to structure yields dissimilar outcomes, highlighting the likelihood of bias in one-way mapping. To address this issue, we propose a novel bidirectional mapping model, named Bidirectional Mapping with Contrastive Learning (BMCL), to reduce the bias between these two unidirectional mappings via ROI-level contrastive learning. We evaluate our framework on clinical phenotype and neurodegenerative disease predictions using two publicly available datasets (HCP and OASIS). Our results demonstrate the superiority of BMCL compared to several state-of-the-art methods. 
    more » « less