Generalized bicycle (GB) codes is a class of quantum error-correcting codes constructed from a pair of binary circulant matrices. Unlike for other simple quantum code ansätze, unrestricted GB codes may have linear distance scaling. In addition, low-density parity-check GB codes have a naturally overcomplete set of low-weight stabilizer generators, which is expected to improve their performance in the presence of syndrome measurement errors. For such GB codes with a given maximum generator weight w, we constructed upper distance bounds by mapping them to codes local in D≤w−1 dimensions, and lower existence bounds which give d≥O(n1/2). We have also conducted an exhaustive enumeration of GB codes for certain prime circulant sizes in a family of two-qubit encoding codes with row weights 4, 6, and 8; the observed distance scaling is consistent with A(w)n1/2+B(w), where n is the code length and A(w) is increasing with w.
more »
« less
Local Testing for Membership in Lattices
Testing membership in lattices is of practical relevance, with applications to integer programming, error detection in lattice-based communication and cryptography. In this work, we initiate a systematic study of {\em local testing} for membership in lattices, complementing and building upon the extensive body of work on locally testable codes. In particular, we formally define the notion of local tests for lattices and present the following: \begin{enumerate} \item We show that in order to achieve low query complexity, it is sufficient to design one-sided non-adaptive {\em canonical} tests. This result is akin to, and based on an analogous result for error-correcting codes due to Ben-Sasson \etal\ (SIAM J. Computing 35(1) pp1--21). \item We demonstrate upper and lower bounds on the query complexity of local testing for membership in {\em code formula} lattices. We instantiate our results for code formula lattices constructed from Reed-Muller codes to obtain nearly-matching upper and lower bounds on the query complexity of testing such lattices. \item We contrast lattice testing from code testing by showing lower bounds on the query complexity of testing low-dimensional lattices. This illustrates large lower bounds on the query complexity of testing membership in {\em knapsack lattices}. On the other hand, we show that knapsack lattices with bounded coefficients have low-query testers if the inputs are promised to lie in the span of the lattice. \end{enumerate}
more »
« less
- Award ID(s):
- 1649515
- PAR ID:
- 10033550
- Date Published:
- Journal Name:
- FSTTCS
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The approximate degree of a Boolean function f is the least degree of a real polynomial that approximates f pointwise to error at most 1/3. The approximate degree of f is known to be a lower bound on the quantum query complexity of f (Beals et al., FOCS 1998 and J. ACM 2001). We find tight or nearly tight bounds on the approximate degree and quantum query complexities of several basic functions. Specifically, we show the following. k-Distinctness: For any constant k, the approximate degree and quantum query complexity of the k-distinctness function is Ω(n3/4−1/(2k)). This is nearly tight for large k, as Belovs (FOCS 2012) has shown that for any constant k, the approximate degree and quantum query complexity of k-distinctness is O(n3/4−1/(2k+2−4)). Image size testing: The approximate degree and quantum query complexity of testing the size of the image of a function [n]→[n] is Ω~(n1/2). This proves a conjecture of Ambainis et al. (SODA 2016), and it implies tight lower bounds on the approximate degree and quantum query complexity of the following natural problems. k-Junta testing: A tight Ω~(k1/2) lower bound for k-junta testing, answering the main open question of Ambainis et al. (SODA 2016). Statistical distance from uniform: A tight Ω~(n1/2) lower bound for approximating the statistical distance of a distribution from uniform, answering the main question left open by Bravyi et al. (STACS 2010 and IEEE Trans. Inf. Theory 2011). Shannon entropy: A tight Ω~(n1/2) lower bound for approximating Shannon entropy up to a certain additive constant, answering a question of Li and Wu (2017). Surjectivity: The approximate degree of the surjectivity function is Ω~(n3/4). The best prior lower bound was Ω(n2/3). Our result matches an upper bound of O~(n3/4) due to Sherstov (STOC 2018), which we reprove using different techniques. The quantum query complexity of this function is known to be Θ(n) (Beame and Machmouchi, Quantum Inf. Comput. 2012 and Sherstov, FOCS 2015). Our upper bound for surjectivity introduces new techniques for approximating Boolean functions by low-degree polynomials. Our lower bounds are proved by significantly refining techniques recently introduced by Bun and Thaler (FOCS 2017).more » « less
-
Quantum error correction (QEC) plays a crucial role in correcting noise and paving the way for fault-tolerant quantum computing. This field has seen significant advancements, with new quantum error correction codes emerging regularly to address errors effectively. Among these, topological codes, particularly surface codes, stand out for their low error thresholds and feasibility for implementation in large-scale quantum computers. However, these codes are restricted to encoding a single qubit. Lattice surgery is crucial for enabling interactions among multiple encoded qubits or between the lattices of a surface code, ensuring that its sophisticated error-correcting features are maintained without significantly increasing the operational overhead. Lattice surgery is pivotal for scaling QECCs across more extensive quantum systems. Despite its critical importance, comprehending lattice surgery is challenging due to its inherent complexity, demanding a deep understanding of intricate quantum physics and mathematical concepts. This paper endeavors to demystify lattice surgery, making it accessible to those without a profound background in quantum physics or mathematics. This work explores surface codes, introduces the basics of lattice surgery, and demonstrates its application in building quantum gates and emulating multi-qubit circuits.more » « less
-
A Boolean {\em $$k$$-monotone} function defined over a finite poset domain $${\cal D}$$ alternates between the values $$0$$ and $$1$$ at most $$k$$ times on any ascending chain in $${\cal D}$$. Therefore, $$k$$-monotone functions are natural generalizations of the classical {\em monotone} functions, which are the {\em $$1$$-monotone} functions. Motivated by the recent interest in $$k$$-monotone functions in the context of circuit complexity and learning theory, and by the central role that monotonicity testing plays in the context of property testing, we initiate a systematic study of $$k$$-monotone functions, in the property testing model. In this model, the goal is to distinguish functions that are $$k$$-monotone (or are close to being $$k$$-monotone) from functions that are far from being $$k$$-monotone. Our results include the following: \begin{enumerate} \item We demonstrate a separation between testing $$k$$-monotonicity and testing monotonicity, on the hypercube domain $$\{0,1\}^d$$, for $$k\geq 3$$; \item We demonstrate a separation between testing and learning on $$\{0,1\}^d$$, for $$k=\omega(\log d)$$: testing $$k$$-monotonicity can be performed with $$2^{O(\sqrt d \cdot \log d\cdot \log{1/\eps})}$$ queries, while learning $$k$$-monotone functions requires $$2^{\Omega(k\cdot \sqrt d\cdot{1/\eps})}$$ queries (Blais et al. (RANDOM 2015)). \item We present a tolerant test for functions $$f\colon[n]^d\to \{0,1\}$$ with complexity independent of $$n$$, which makes progress on a problem left open by Berman et al. (STOC 2014). \end{enumerate} Our techniques exploit the testing-by-learning paradigm, use novel applications of Fourier analysis on the grid $$[n]^d$, and draw connections to distribution testing techniques.more » « less
-
In this work, we consider the sample complexity required for testing the monotonicity of distributions over partial orders. A distribution p over a poset is {\em monotone} if, for any pair of domain elements x and y such that x⪯y, p(x)≤p(y). To understand the sample complexity of this problem, we introduce a new property called \emph{bigness} over a finite domain, where the distribution is T-big if the minimum probability for any domain element is at least T. We establish a lower bound of Ω(n/logn) for testing bigness of distributions on domains of size n. We then build on these lower bounds to give Ω(n/logn) lower bounds for testing monotonicity over a matching poset of size n and significantly improved lower bounds over the hypercube poset. We give sublinear sample complexity bounds for testing bigness and for testing monotonicity over the matching poset. We then give a number of tools for analyzing upper bounds on the sample complexity of the monotonicity testing problem.more » « less
An official website of the United States government

