 Award ID(s):
 1649515
 NSFPAR ID:
 10033550
 Date Published:
 Journal Name:
 FSTTCS
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Generalized bicycle (GB) codes is a class of quantum errorcorrecting codes constructed from a pair of binary circulant matrices. Unlike for other simple quantum code ansätze, unrestricted GB codes may have linear distance scaling. In addition, lowdensity paritycheck GB codes have a naturally overcomplete set of lowweight stabilizer generators, which is expected to improve their performance in the presence of syndrome measurement errors. For such GB codes with a given maximum generator weight w, we constructed upper distance bounds by mapping them to codes local in D≤w−1 dimensions, and lower existence bounds which give d≥O(n1/2). We have also conducted an exhaustive enumeration of GB codes for certain prime circulant sizes in a family of twoqubit encoding codes with row weights 4, 6, and 8; the observed distance scaling is consistent with A(w)n1/2+B(w), where n is the code length and A(w) is increasing with w.more » « less

null (Ed.)The approximate degree of a Boolean function f is the least degree of a real polynomial that approximates f pointwise to error at most 1/3. The approximate degree of f is known to be a lower bound on the quantum query complexity of f (Beals et al., FOCS 1998 and J. ACM 2001). We find tight or nearly tight bounds on the approximate degree and quantum query complexities of several basic functions. Specifically, we show the following. kDistinctness: For any constant k, the approximate degree and quantum query complexity of the kdistinctness function is Ω(n3/4−1/(2k)). This is nearly tight for large k, as Belovs (FOCS 2012) has shown that for any constant k, the approximate degree and quantum query complexity of kdistinctness is O(n3/4−1/(2k+2−4)). Image size testing: The approximate degree and quantum query complexity of testing the size of the image of a function [n]→[n] is Ω~(n1/2). This proves a conjecture of Ambainis et al. (SODA 2016), and it implies tight lower bounds on the approximate degree and quantum query complexity of the following natural problems. kJunta testing: A tight Ω~(k1/2) lower bound for kjunta testing, answering the main open question of Ambainis et al. (SODA 2016). Statistical distance from uniform: A tight Ω~(n1/2) lower bound for approximating the statistical distance of a distribution from uniform, answering the main question left open by Bravyi et al. (STACS 2010 and IEEE Trans. Inf. Theory 2011). Shannon entropy: A tight Ω~(n1/2) lower bound for approximating Shannon entropy up to a certain additive constant, answering a question of Li and Wu (2017). Surjectivity: The approximate degree of the surjectivity function is Ω~(n3/4). The best prior lower bound was Ω(n2/3). Our result matches an upper bound of O~(n3/4) due to Sherstov (STOC 2018), which we reprove using different techniques. The quantum query complexity of this function is known to be Θ(n) (Beame and Machmouchi, Quantum Inf. Comput. 2012 and Sherstov, FOCS 2015). Our upper bound for surjectivity introduces new techniques for approximating Boolean functions by lowdegree polynomials. Our lower bounds are proved by significantly refining techniques recently introduced by Bun and Thaler (FOCS 2017).more » « less

In this work, we consider the sample complexity required for testing the monotonicity of distributions over partial orders. A distribution p over a poset is {\em monotone} if, for any pair of domain elements x and y such that x⪯y, p(x)≤p(y). To understand the sample complexity of this problem, we introduce a new property called \emph{bigness} over a finite domain, where the distribution is Tbig if the minimum probability for any domain element is at least T. We establish a lower bound of Ω(n/logn) for testing bigness of distributions on domains of size n. We then build on these lower bounds to give Ω(n/logn) lower bounds for testing monotonicity over a matching poset of size n and significantly improved lower bounds over the hypercube poset. We give sublinear sample complexity bounds for testing bigness and for testing monotonicity over the matching poset. We then give a number of tools for analyzing upper bounds on the sample complexity of the monotonicity testing problem.more » « less

Bosonic encoding of quantum information into harmonic oscillators is a hardware efficient approach to battle noise. In this regard, oscillatortooscillator codes not only provide an additional opportunity in bosonic encoding, but also extend the applicability of error correction to continuousvariable states ubiquitous in quantum sensing and communication. In this work, we derive the optimal oscillatortooscillator codes among the general family of GottesmanKitaevPreskill (GKP)stablizer codes for homogeneous noise. We prove that an arbitrary GKPstabilizer code can be reduced to a generalized GKP twomodesqueezing (TMS) code. The optimal encoding to minimize the geometric mean error can be constructed from GKPTMS codes with an optimized GKP lattice and TMS gains. For singlemode data and ancilla, this optimal code design problem can be efficiently solved, and we further provide numerical evidence that a hexagonal GKP lattice is optimal and strictly better than the previously adopted square lattice. For the multimode case, general GKP lattice optimization is challenging. In the twomode data and ancilla case, we identify the D4 lattice—a 4dimensional densepacking lattice—to be superior to a product of lower dimensional lattices. As a byproduct, the code reduction allows us to prove a universal nothresholdtheorem for arbitrary oscillatorstooscillators codes based on Gaussian encoding, even when the ancilla are not GKP states.

Locally Decodable Codes (LDCs) are errorcorrecting codes for which individual message symbols can be quickly recovered despite errors in the codeword. LDCs for Hamming errors have been studied extensively in the past few decades, where a major goal is to understand the amount of redundancy that is necessary and sufficient to decode from large amounts of error, with small query complexity. Despite exciting progress, we still don't have satisfactory answers in several important parameter regimes. For example, in the case of 3query LDCs, the gap between existing constructions and lower bounds is superpolynomial in the message length. In this work we study LDCs for insertion and deletion errors, called Insdel LDCs. Their study was initiated by Ostrovsky and PaskinCherniavsky (Information Theoretic Security, 2015), who gave a reduction from Hamming LDCs to Insdel LDCs with a small blowup in the code parameters. On the other hand, the only known lower bounds for Insdel LDCs come from those for Hamming LDCs, thus there is no separation between them. Here we prove new, strong lower bounds for the existence of Insdel LDCs. In particular, we show that 2query linear Insdel LDCs do not exist, and give an exponential lower bound for the length of all qquery Insdel LDCs with constant q. For q ≥ 3 our bounds are exponential in the existing lower bounds for Hamming LDCs. Furthermore, our exponential lower bounds continue to hold for adaptive decoders, and even in privatekey settings where the encoder and decoder share secret randomness. This exhibits a strict separation between Hamming LDCs and Insdel LDCs. Our strong lower bounds also hold for the related notion of Insdel LCCs (except in the privatekey setting), due to an analogue to the Insdel notions of a reduction from Hamming LCCs to LDCs. Our techniques are based on a delicate design and analysis of hard distributions of insertion and deletion errors, which depart significantly from typical techniques used in analyzing Hamming LDCs.more » « less