skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Residual self-interference cancellation and data detection in full-duplex communication systems
Residual self-interference cancellation is an important practical requirement for realizing the full potential of full-duplex (FD) communication. Traditionally, the residual self-interference is cancelled via digital processing at the baseband, which requires accurate knowledge of channel estimates of the desired and self-interference channels. In this work, we consider point-to-point FD communication and propose a superimposed signaling technique to cancel the residual self-interference and detect the data without estimating the unknown channels. We show that when the channel estimates are not available, data detection in FD communication results in ambiguity if the modulation constellation is symmetric around the origin. We demonstrate that this ambiguity can be resolved by superimposed signalling, i.e., by shifting the modulation constellation away from the origin, to create an asymmetric modulation constellation. We compare the performance of the proposed detection method to that of the conventional channel estimation-based detection method, where the unknown channels are first estimated and then the data signal is detected. Simulations show that for the same average energy over a transmission block, the bit error rate performance of the proposed detection method is better than that of the conventional method. The proposed method does not require any channel estimates and is bandwidth efficient.  more » « less
Award ID(s):
1642865
NSF-PAR ID:
10043841
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE International Conference on Communicaitons
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper we theoretically and experimentally demonstrate a novel adaptation of independent component analysis (ICA) for compensation of both cross-polarization and inter-symbol interference in a direct-detection link using Stokes vector modulation (SVM). SVM systems suffer from multiple simultaneous impairments that can be difficult to resolve with conventional optical channel DSP techniques. The proposed method is based on a six-dimensional adaptation of ICA that simultaneously de-rotates the SVM constellation, corrects distortion of constellation shape, and mitigates inter-symbol interference (ISI) at high symbol rates. Experimental results at 7.5 Gb/s and 15Gb/s show that the newly developed ICA-based equalizer achieves power penalties below ∼1 dB, compared to the ideal theoretical bit-error rate (BER) curves. At 30-Gb/s, where ISI is more severe, ICA still enables polarization de-rotation and BER < 10−5before error correction.

     
    more » « less
  2. Self-driving vehicles will need low-latency and high-capacity vehicular communication for acquiring wider view of their surroundings. Such vehicle-to-vehicle communication can be indirectly supported in some circumstances (e.g., if blocked) through adjacent road side units (RSUs). RSUs will be acting as full-duplex repeaters among the vehicles to ensure low latency and high data rate. However, full-duplex repeaters result in self-interference phenomenon which can degrade the reliability of the communication links. In this work, we aim to enhance the reliability of full-duplex repeaters by canceling out the self-interference impact, and applying a beamforming scheme that is matched to the source-destination composite channel. We show that the proposed self-interference cancellation and beamforming (SICAB) algorithm significantly reduces the error rate for low-isolated repeaters. Finally, we illustrate the impact of the repeater isolation capability on the performance of the proposed SICAB algorithm. 
    more » « less
  3. Full-duplex (FD) wireless communication refers to a communication system in which both ends of a wireless link transmit and receive data simultaneously and on the same frequency band. One of the major challenges of FD communication is self-interference (SI), which refers to the interference caused by transmitting elements of a radio to its own receiving elements. Fully digital beamforming is a technique used to conduct beamforming and has been recently repurposed to also reduce SI. However, the cost of fully digital systems (e.g., base stations) dramatically increases with the increase in the number of antennas as these systems use a separate Tx-Rx RF chain for each antenna element. Hybrid beamforming systems use a much smaller number of RF chains to feed the same number of antennas, and hence can significantly reduce the deployment cost. In this paper, we aim to quantify the performance gap between these two radio architectures in terms of SI cancellation and system capacity in FD multi-user MIMO setups. We first obtained over-the-air channel measurement data on two outdoor massive MIMO deployments over the course of three months. We next study two state-of-the-art transmit beamforming based FD systems for fully digital and hybrid architectures. We show that the hybrid beamforming system can achieve 80-97% of the fully digital system capacity, depending on the number of clients. 
    more » « less
  4. Wireless systems which can simultaneously transmit and receive (STAR) are gaining significant academic and commercial interest due to their wide range of applications such as full-duplex (FD) wireless communication and FMCW radar. FD radios, where the transmitter (TX) and the receiver (RX) operate simultaneously at the same frequency, can potentially double the data rate at the physical layer and can provide many other advantages in the higher layers. The antenna interface of an FD radio is typically built using a multi-antenna system, or a single antenna through a bulky magnetic circulator or a lossy reciprocal hybrid. However, recent advances in CMOS-integrated circulators through spatio-temporal conductivity modulation have shown promise and potential to replace traditional bulky magnetic circulators. However, unlike magnetic circulators, CMOS-integrated non-magnetic circulators will introduce some nonlinear distortion and spurious tones arising from their clock circuitry. In this work, we present an FD radio using a highly linear CMOS integrable circulator, a frequency-flat RF canceler, and a USRP software-defined radio (SDR). At TX power level of +15 dBm, the implemented FD radio achieves a self-interference cancellation (SIC) of +55 dB from the circulator and RF canceler in the RF domain, and an overall SIC of +95 dB together with SIC in the digital domain. To analyze the non-linear phenomena of the CMOS circulator, we calculated the link level data-rate gain in an FD system with imperfect SIC and then extended this calculation to count the effect of TX-RX non-linearity of the circulator. In addition, we provide a qualitative discussion on the spurious tone responses of the circulator due to the clocking imperfections and non-linearity. Index Terms—Circulator, CMOS, conductivity modulation, full-duplex, non-reciprocity, self-interference cancellation. 
    more » « less
  5. Full-duplex (FD) wireless and phased arrays are both promising techniques that can significantly improve data rates in future wireless networks. However, integrating FD with transmit (Tx) and receive (Rx) phased arrays is extremely challenging, due to the large number of self-interference (SI) channels. Previous work relies on either RF canceller hardware or on analog/digital Tx beamforming (TxBF) to achieve SI cancellation (SIC). However, Rx beamforming (RxBF) and the data rate gain introduced by FD nodes employing beamforming have not been considered yet. We study FD phased arrays with joint TxBF and RxBF with the objective of achieving improved FD data rates. The key idea is to carefully select the TxBF and RxBF weights to achieve wideband RF SIC in the spatial domain with minimal TxBF and RxBF gain losses. Essentially, TxBF and RxBF are repurposed, thereby not requiring specialized RF canceller circuitry. We formulate the corresponding optimization problem and develop an iterative algorithm to obtain an approximate solution with provable performance guarantees. Using SI channel measurements and datasets, we extensively evaluate the performance of the proposed approach in different use cases under various network settings. The results show that an FD phased array with 9/36/72 elements can cancel the total SI power to below the noise floor with sum TxBF and RxBF gain losses of 10.6/7.2/6.9 dB, even at Tx power level of 30 dBm. Moreover, the corresponding FD rate gains are at least 1.33/1.66/1.68× 
    more » « less