With the increasing prevalence of online learning, adapting education to diverse learner needs remains a persistent challenge. Recent advancements in artificial intelligence (AI), particularly large language models (LLMs), promise powerful tools and capabilities to enhance personalized learning in online educational environments. In this work, we explore how LLMs can improve personalized learning experiences by catering to individual user needs toward enhancing the overall quality of online education. We designed personalization guidelines based on the growing literature on personalized learning to ground LLMs in generating tailored learning plans. To operationalize these guidelines, we implemented LearnMate, an LLM-based system that generates personalized learning plans and provides users with real-time learning support. We discuss the implications and future directions of this work, aiming to move beyond the traditional one-size-fits-all approach by integrating LLM-based personalized support into online learning environments.
more »
« less
Personalizing Online Educational Tools
As more people turn to online resources to learn, there will be an increasing need for systems to understand and adapt to the needs of their users. Engagement is an important aspect to keep users committed to learning. Learning approaches for online systems can benefit from personalization to engage their users. However, many approaches for personalization currently rely on methods (e.g., historical behavioral data, questionnaires, quizzes) that are unable to provide a personalized experience from the start-of-use of a system. As users in a learning environment are exposed to new content, the first impression that they receive from the system influences their commitment with the program. In this position paper we propose a quantitative approach for personalization in online learning environments to overcome current problems for personalization in such environments.
more »
« less
- Award ID(s):
- 1657160
- PAR ID:
- 10056854
- Date Published:
- Journal Name:
- ACM Theory-Informed User Modeling for Tailoring and Personalizing Interfaces
- Page Range / eLocation ID:
- 27 - 30
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Web personalization, e.g., recommendation or relevance search, tailoring a service/product to accommodate specific online users, is becoming increasingly important. Inductive personalization aims to infer the relations between existing entities and unseen new ones, e.g., searching relevant authors for new papers or recommending new items to users. This problem, however, is challenging since most of recent studies focus on transductive problem for existing entities. In addition, despite some inductive learning approaches have been introduced recently, their performance is sub-optimal due to relatively simple and inflexible architectures for aggregating entity’s content. To this end, we propose the inductive contextual personalization (ICP) framework through contextual relation learning. Specifically, we first formulate the pairwise relations between entities with a ranking optimization scheme that employs neural aggregator to fuse entity’s heterogeneous contents. Next, we introduce a node embedding term to capture entity’s contextual relations, as a smoothness constraint over the prior ranking objective. Finally, the gradient descent procedure with adaptive negative sampling is employed to learn the model parameters. The learned model is capable of inferring the relations between existing entities and inductive ones. Thorough experiments demonstrate that ICP outperforms numerous baseline methods for two different applications, i.e., relevant author search and new item recommendation.more » « less
-
null (Ed.)Automated sound recognition tools can be a useful complement to d/Deaf and hard of hearing (DHH) people's typical communication and environmental awareness strategies. Pre-trained sound recognition models, however, may not meet the diverse needs of individual DHH users. While approaches from human-centered machine learning can enable non-expert users to build their own automated systems, end-user ML solutions that augment human sensory abilities present a unique challenge for users who have sensory disabilities: how can a DHH user, who has difficulty hearing a sound themselves, effectively record samples to train an ML system to recognize that sound? To better understand how DHH users can drive personalization of their own assistive sound recognition tools, we conducted a three-part study with 14 DHH participants: (1) an initial interview and demo of a personalizable sound recognizer, (2) a week-long field study of in situ recording, and (3) a follow-up interview and ideation session. Our results highlight a positive subjective experience when recording and interpreting training data in situ, but we uncover several key pitfalls unique to DHH users---such as inhibited judgement of representative samples due to limited audiological experience. We share implications of these results for the design of recording interfaces and human-the-the-loop systems that can support DHH users to build sound recognizers for their personal needs.more » « less
-
This work proposes Dynamic Linear Epsilon-Greedy, a novel contextual multi-armed bandit algorithm that can adaptively assign personalized content to users while enabling unbiased statistical analysis. Traditional A/B testing and reinforcement learning approaches have trade-offs between empirical investigation and maximal impact on users. Our algorithm seeks to balance these objectives, allowing platforms to personalize content effectively while still gathering valuable data. Dynamic Linear Epsilon-Greedy was evaluated via simulation and an empirical study in the ASSISTments online learning platform. In simulation, Dynamic Linear Epsilon-Greedy performed comparably to existing algorithms and in ASSISTments, slightly increased students’ learning compared to A/B testing. Data collected from its recommendations allowed for the identification of qualitative interactions, which showed high and low knowledge students benefited from different content. Dynamic Linear Epsilon-Greedy holds promise as a method to balance personalization with unbiased statistical analysis. All the data collected during the simulation and empirical study are publicly available at https://osf.io/zuwf7/.more » « less
-
Today’s recommender systems are criticized for recommending items that are too obvious to arouse users’ interests. Therefore the research community has advocated some ”beyond accuracy” evaluation metrics such as novelty, diversity, and serendipity with the hope of promoting information discovery and sustaining users’ interests over a long period of time. While bringing in new perspectives, most of these evaluation metrics have not considered individual users’ differences in their capacity to experience those ”beyond accuracy” items. Open-minded users may embrace a wider range of recommendations than conservative users. In this paper, we proposed to use curiosity traits to capture such individual users’ differences. We developed a model to approximate an individual’s curiosity distribution over different stimulus levels. We used an item’s surprise level to estimate the stimulus level and whether such a level is in the range of the user’s appetite for stimulus, calledComfort Zone. We then proposed a recommender system framework that considers both user preference and theirComfort Zonewhere the curiosity is maximally aroused. Our framework differs from a typical recommender system in that it leverages human’sComfort Zonefor stimuli to promote engagement with the system. A series of evaluation experiments have been conducted to show that our framework is able to rank higher the items with not only high ratings but also high curiosity stimulation. The recommendation list generated by our algorithm has higher potential of inspiring user curiosity compared to the state-of-the-art deep learning approaches. The personalization factor for assessing the surprise stimulus levels further helps the recommender model achieve smaller (better) inter-user similarity.more » « less
An official website of the United States government

