The challenges associated with efficiently and effectively linearizing a nonlinear power amplifier (PA) over wide signal bandwidths are increasingly important to the design of 5G front-ends. Conventional digital linearization techniques are limited by absolute bandwidth, while the RF-domain nonlinear PA typically exhibits consistent fractional bandwidth even as the carrier frequency is increased. Therefore, RF-domain design techniques, like those focusing on bias-line impedance selection, are critical for overall distortion reduction. To evaluate bias-line effects, a demonstrator PA is here investigated over a range of Class-AB biases and over a range of drain inductance values. The characterization under two-tone and LTE-like modulated excitations with 10-MHz and 100-MHz instantaneous bandwidth shows that the conventional linear-efficiency trade-off in bias design does not necessarily hold true for wide instantaneous bandwidths. Additionally, techniques to synthesize a negative baseband impedance using low frequency feedback are discussed.
more »
« less
A 28GHz 41%-PAE linear CMOS power amplifier using a transformer-based AM-PM distortion-correction technique for 5G phased arrays
To fulfill the insatiable demand for high data-rates, the millimeter-wave (mmW) 5G communication standard will extensively use high-order complex-modulation schemes (e.g., QAM) with high peak-to-average power ratios (PAPRs) and large RF bandwidths. High-efficiency integrated CMOS power amplifiers (PA) are highly desirable for portable devices for improved battery life, reduced form factor, and low cost. To meet simultaneous requirements for high efficiency and reasonable linearity, PAs intended for use with complex modulation are often operated in Class-AB mode [1,2]. For small input amplitude in Class-AB, the device is turned-on and has an input capacitance (Cgs) of ~(2/3)WLCox. As the input amplitude becomes large, the device turns-off for part of the RF cycle, thus reducing its effective input capacitance. This input capacitance-modulation effect creates an input-amplitude-dependent phase shift in Class-AB mode resulting in an amplitude-modulation to phase-modulation (AM-PM) distortion [2]. Consequently, it degrades linearity metrics (e.g., error vector magnitude (EVM), adjacent channel power ratio (ACPR)) in complex-modulation systems. External linearization techniques (e.g., digital pre-distortion) are often used in transmitters to meet linearity requirements, but they are complex in nature and expensive to implement. Apart from these, few works at low-GHz frequencies are reported to improve the PA's intrinsic linearity using a varactor-or PMOS-based AM-PM correction methods [1,2]. These works reduce the design overhead of external linearization systems; however, the inclusion of additional capacitive element to correct AM-PM degrades gain and efficiency, which is not optimal for mmW frequencies
more »
« less
- Award ID(s):
- 1705026
- PAR ID:
- 10057546
- Date Published:
- Journal Name:
- 2018 IEEE International Solid - State Circuits Conference - (ISSCC)
- Page Range / eLocation ID:
- 406-408
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This work presents a power amplifier (PA) linearization approach based on baseband feedback. The modulated signal envelope is fed back from the transistor's drain to its gate with an applied amplitude and phase shift selected to reduce the intermodulation distortion (IMD3) product at the output. The design targets IMD3 improvement near the PA's 1-dB compression point (P1dB), enabling linear operation at a higher output power level and therefore improved device periphery utilization and efficiency. This approach offers a potential linearization alternative to digital pre-distortion, which cannot be applied in some systems, without affecting the RF performance. The 850-MHz proof-of-concept prototype based on a 15-W GaN device is characterized with a two-tone measurement with 5-MHz spacing, and demonstrates 9-dB improvement of the lower IMD3 tone near the P1dB point.more » « less
-
Millimeter wave (mmW) communications is viewed as the key enabler of 5G cellular networks due to vast spectrum availability that could boost peak rate and capacity. Due to increased propagation loss in mmW band, transceivers with massive antenna array are required to meet a link budget, but their power consumption and cost become limiting factors for commercial systems. Radio designs based on hybrid digital and analog array architectures and the usage of radio frequency (RF) signal processing via phase shifters have emerged as potential solutions to improve radio energy efficiency and deliver performances close to the conventional digital antenna arrays. In this paper, we provide an overview of the state-of-the-art mmW massive antenna array designs and comparison among three array architectures, namely digital array, partially-connected hybrid array (sub-array), and fully-connected hybrid array. The comparison of performance, power, and area for these three architectures is performed for three representative 5G downlink use cases, which cover a range of pre-beamforming signal-to-noise-ratios (SNR) and multiplexing regimes. This is the first study to comprehensively model and quantitatively analyze all design aspects and criteria including: 1) optimal linear precoder, 2) impact of quantization error in digital-to-analog converter (DAC) and phase shifters, 3) RF signal distribution network, 4) power and area estimation based on state-of-the-art mmW circuits including baseband digital precoding, digital signal distribution network, high-speed DACs, oscillators, mixers, phase shifters, RF signal distribution network, and power amplifiers. Our simulation results show that the fully-digital array architecture is the most power and area efficient compared against optimized designs for sub-array and hybrid array architectures. Our analysis shows that digital array architecture benefits greatly from multi-user multiplexing. The analysis also reveals that sub-array architecture performance is limited by reduced beamforming gain due to array partitioning, while the system bottleneck of the fully-connected hybrid architecture is the excessively complicated and power hungry RF signal distribution network.more » « less
-
Millimeter-wave (mmWave) communications and cell densification are the key techniques for the future evolution of cellular systems beyond 5G. Although the current mmWave radio designs are focused on hybrid digital and analog receiver array architectures, the fully digital architecture is an appealing option due to its flexibility and support for multi-user multiple-input multiple-output (MIMO). In order to achieve reasonable power consumption and hardware cost, the specifications of analog circuits are expected to be compromised, including the resolution of analog-to-digital converter (ADC) and the linearity of radio-frequency (RF) front end. Although the state-of-the-art studies focus on the ADC, the nonlinearity can also lead to severe system performance degradation when strong input signals introduce inter-modulation distortion (IMD). The impact of RF nonlinearity becomes more severe with densely deployed mmWave cells since signal sources closer to the receiver array are more likely to occur. In this work, we design and analyze the digital IMD compensation algorithm, and study the relaxation of the required linearity in the RF-chain. We propose novel algorithms that jointly process digitized samples to recover amplifier saturation, and relies on beam space operation which reduces the computational complexity as compared to per-antenna IMD compensation.more » « less
-
This article presents a novel architecture of load-modulated balanced amplifier (LMBA) with a unique load-modulation characteristic different from any existing LMBAs and Doherty power amplifiers (DPAs), which is named pseudo-Doherty LMBA (PD-LMBA). Based on a special combination of control amplifier (carrier) and balanced amplifier (peaking) together with proper phase and amplitude controls, an optimal load-modulation behavior can be achieved for PD-LMBA, leading to maximized efficiency over extended power back-off range. More importantly, the efficiency optimization can be achieved with only a static setting of phase offset at a given frequency, which greatly simplifies the complexity for phase control. Furthermore, the cooperations of the carrier and peaking amplifiers in PD-LMBA are fully decoupled, thus lifting the fundamental bandwidth barrier imposed on the Doherty-based active load modulation. Upon theoretical proof of these discoveries, a wideband RF-input PD-LMBA is physically developed using the GaN technology for experimental demonstration. The prototype achieves a highly efficient performance from 1.5 to 2.7 GHz, e.g., 58%–72% of efficiency at 42.5-dBm peak power and 47%–58% at 10-dB output back-off (OBO). When stimulated by a 10-MHz long term evolution (LTE) signal with a 9.5-dB peak-to-average power ratio (PAPR), the developed PD-LMBA achieves an efficiency of 44%–53% over the entire bandwidth at an average output power of around 33 dBm.more » « less
An official website of the United States government

