skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hybrid.AI: A Learning Search Engine for Large-scale Structured Data
Variety of Big data is a significant impediment for anyone who wants to search inside a large-scale structured dataset. For example, there are millions of tables available on the Web, but the most relevant search result does not necessarily match the keyword-query exactly due to a variety of ways to represent the same information. Here we describe Hybrid.AI, a learning search engine for large-scale structured data that uses automatically generated machine learning classifiers and Unified Famous Objects (UFOs) to return the most relevant search results from a large-scale Web tables corpora. We evaluate it over this corpora, collecting 99 queries and their results from users, and observe significant relevance gain.  more » « less
Award ID(s):
1701081
PAR ID:
10061947
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
WWW '18 Companion Proceedings of the The Web Conference 2018
Page Range / eLocation ID:
1507 to 1514
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Anwer, Nabil (Ed.)
    Design documentation is presumed to contain massive amounts of valuable information and expert knowledge that is useful for learning from the past successes and failures. However, the current practice of documenting design in most industries does not result in big data that can support a true digital transformation of enterprise. Very little information on concepts and decisions in early product design has been digitally captured, and the access and retrieval of them via taxonomy-based knowledge management systems are very challenging because most rule-based classification and search systems cannot concurrently process heterogeneous data (text, figures, tables, references). When experts retire or leave a design unit, industry often cannot benefit from past knowledge for future product design, and is left to reinvent the wheel repeatedly. In this work, we present AI-based Natural Language Processing (NLP) models which are trained for contextually representing technical documents containing texts, figures and tables, to do a semantic search for the retrieval of relevant data across large corpora of documents. By connecting textual and non-textual data through the use of an associative database, the semantic search question-answering system we developed can provide more comprehensive answers in the context of users’ questions. For the demonstration and assessment of this model, the semantic search question-answering system is applied to the Intergovernmental Panel on Climate Change (IPCC) Special Report 2019, which is more than 600 pages long and difficult to read and understand, even by most experts. Users can input custom queries relating to climate change concerns and receive evidence from the report that is contextually meaningful. We expect this method can transform current repositories of design documentation of heterogeneous data forms into structured knowledge-bases which can return relevant information efficiently as well as can evolve to embody manageable big data for the true digital transformation of design. 
    more » « less
  2. Table search aims to answer a query with a ranked list of tables. Unfortunately, current test corpora have focused mostly on needle- in-the-haystack tasks, where only a few tables are expected to exactly match the query intent. Instead, table search tasks often arise in response to the need for retrieving new datasets or augment- ing existing ones, e.g., for data augmentation within data science or machine learning pipelines. Existing table repositories and bench- marks are limited in their ability to test retrieval methods for table search tasks. Thus, to close this gap, we introduce a novel dataset for query-by-example Semantic Table Search. This novel dataset con- sists of two snapshots of the large-scale Wikipedia tables collection from 2013 and 2019 with two important additions: (1) a page and topic aware ground truth relevance judgment and (2) a large-scale DBpedia entity linking annotation. Moreover, we generate a novel set of entity-centric queries that allows testing existing methods under a novel search scenario: semantic exploratory search. The resulting resource consists of 9,296 novel queries, 610,553 query- table relevance annotations, and 238,038 entity-linked tables from the 2013 snapshot. Similarly, on the 2019 snapshot, the resource consists of 2,560 queries, 958,214 relevance annotations, and 457,714 total tables. This makes our resource the largest annotated table- search corpus to date (97 times more queries and 956 times more annotated tables than any existing benchmark). We perform a user study among domain experts and prove that these annotators agree with the automatically generated relevance annotations. As a re- sult, we can re-evaluate some basic assumptions behind existing table search approaches identifying their shortcomings along with promising novel research directions. 
    more » « less
  3. null (Ed.)
    Ad hoc table retrieval is the problem of identifying the most relevant datasets to a user's query. We present an approach to the problem that builds a knowledge graph by combining information about the collection of tables with external sources such as WordNet and pretrained Glove embeddings. We apply multi-relational graph convolutional networks to learn embeddings for the knowledge graph nodes and utilize three different methods to create vectors representing the tables and queries from these embeddings. We create a novel learning-to-rank neural architecture that incorporates the multiple embeddings in order to improve table retrieval results. We evaluate our approach using two large collections of tables from public WikiTables and Web tables data, demonstrating substantial improvements over state-of-the-art methods in table retrieval. 
    more » « less
  4. Structured data artifacts such as tables are widely used in scientific literature to organize and concisely communicate important statistical information. Discovering relevant information in these tables remains a significant challenge owing to their structural heterogeneity, dense and often implicit semantics, and diffuse context. This paper describes how we leverage semantic technologies to enable technical experts to search and explore tabular data embedded within scientific documents. We present a system for the on-demand construction of knowledge graphs representing scientific tables (drawn from online scholarly articles hosted by PubMed Central) and for synthesizing tabular responses to semantic search requests against such graphs. We discuss key differentiators in our overall approach, including a two-stage semantic table interpretation that relies on an extensive structural and syntactic characterization of scientific tables and a prototype knowledge discovery engine that uses automatically inferred semantics of scientific tables to serve search requests by potentially fusing information from multiple tables on the fly. We evaluate our system on a real-world dataset of approximately 120,000 tables extracted from over 62,000 COVID-19-related scientific articles. 
    more » « less
  5. A vast proportion of scientific data remains locked behind dynamic web interfaces, often called the deep web—inaccessible to conventional search engines and standard crawlers. This gap between data availability and machine usability hampers the goals of open science and automation. While registries like FAIRsharing offer structured metadata describing data standards, repositories, and policies aligned with the FAIR (Findable, Accessible, Interoperable, and Reusable) principles, they do not enable seamless, programmatic access to the underlying datasets. We present FAIRFind, a system designed to bridge this accessibility gap. FAIRFind autonomously discovers, interprets, and operationalizes access paths to biological databases on the deep web, regardless of their FAIR compliance. Central to our approach is the Deep Web Communication Protocol (DWCP), a resource description language that represents web forms, HyperText Markup Language (HTML) tables, and file-based data interfaces in a machine-actionable format. Leveraging large language models (LLMs), FAIRFind combines a specialized deep web crawler and web-form comprehension engine to transform passive web metadata into executable workflows. By indexing and embedding these workflows, FAIRFind enables natural language querying over diverse biological data sources and returns structured, source-resolved results. Evaluation across multiple open-source LLMs and database types demonstrates over 90% success in structured data extraction and high semantic retrieval accuracy. FAIRFind advances existing registries by turning linked resources from static references into actionable endpoints, laying a foundation for intelligent, autonomous data discovery across scientific domains. 
    more » « less