In this paper, we study a sampling and transmission scheduling problem for multi-source remote estimation, where a scheduler determines when to take samples from multiple continuous-time Gauss-Markov processes and send the samples over multiple channels to remote estimators. The sample transmission times are i.i.d. across samples and channels. The objective of the scheduler is to minimize the weighted sum of the time-average expected estimation errors of these Gauss-Markov sources. This problem is a continuous-time Restless Multi-armed Bandit (RMAB) problem with a continuous state space. We prove that the bandits are indexable and derive an exact expression of the Whittle index. To the extent of our knowledge, this is the first Whittle index policy for multi-source signal-aware remote estimation of Gauss-Markov processes. We further investigate signal-agnostic remote estimation and develop a Whittle index policy for multi-source Age of Information (AoI) minimization over parallel channels with i.i.d. random transmission times. Our results unite two theoretical frameworks for remote estimation and AoI minimization: threshold-based sampling and Whittle index-based scheduling. In the single-source, single-channel scenario, we demonstrate that the optimal solution to the sampling and scheduling problem can be equivalently expressed as both a threshold-based sampling strategy and a Whittle index-based scheduling policy. Notably, the Whittle index is equal to zero if and only if two conditions are satisfied: (i) the channel is idle, and (ii) the estimation error is precisely equal to the threshold in the threshold-based sampling strategy. Moreover, the methodology employed to derive threshold-based sampling strategies in the single-source, single-channel scenario plays a crucial role in establishing indexability and evaluating the Whittle index in the more intricate multi-source, multi-channel scenario. Our numerical results show that the proposed policy achieves high performance gain over the existing policies when some of the Gauss-Markov processes are highly unstable.
more »
« less
Femtocell Scheduling as a Restless Multiarmed Bandit Problem Using Partial Channel State Observation
In this paper, we address the problem of channel allocation for femtocells that share the use of regular macrocell spectrum. The femto basestation (FBS) scheduling problem is formulated in the form of restless multiarmed bandit (RMAB) framework. Our goal is to choose the arms/channels that maximize the total expected discounted reward over infinite horizon while minimizing the induced interference due to channel sharing with macrocell. Without direct observation of true channel state, we use the available macrocell user feedback known as channel quality indicator (CQI). In general, the RMAB problem is P-SPACE hard. We propose a heuristic low complexity indexing policy referred as approximated Whittle index to rank available channels for FBS. Although finding a closed form channel ranking solution typically involve dynamic programming, we show that based on the partial channel information within CQI, there exists a closed form for the channel index. Moreover, we demonstrate the performance advantage of the proposed indexing policy over a myopic policy.
more »
« less
- PAR ID:
- 10066944
- Date Published:
- Journal Name:
- IEEE International Conference on Communications
- ISSN:
- 1938-1883
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study a scheduling problem for a base-station transmitting status information to multiple user-equipments (UE) with the goal of minimizing the total expected Age-of-Information (AoI). Such a problem can be formulated as a Restless MultiArmed Bandit (RMAB) problem and solved asymptoticallyoptimally by a low-complexity Whittle index policy, if each UE’s sub-problem is Whittle indexable. However, proving Whittle indexability can be highly non-trivial, especially when the value function cannot be derived in closed-form. In particular, this is the case for the AoI minimization problem with stochastic arrivals and unreliable channels, whose Whittle indexability remains an open problem. To overcome this difficulty, we develop a sufficient condition for Whittle indexability based on the notion of active time (AT). Even though the AT condition shares considerable similarity to the Partial Conservation Law (PCL) condition, it is much easier to understand and verify. We then apply our AT condition to the stochastic-arrival unreliablechannel AoI minimization problem and, for the first time in the literature, prove its Whittle indexability. Our proof uses a novel coupling approach to verify the AT condition, which may also be of independent interest to other large-scale RMAB problems.more » « less
-
In this study, we investigate a context-aware status updating system consisting of multiple sensor-estimator pairs. A centralized monitor pulls status updates from multiple sensors that are monitoring several safety-critical situations (e.g., carbon monoxide density in forest fire detection, machine safety in industrial automation, and road safety). Based on the received sensor updates, multiple estimators determine the current safety-critical situations. Due to transmission errors and limited communication resources, the sensor updates may not be timely, resulting in the possibility of misunderstanding the current situation. In particular, if a dangerous situation is misinterpreted as safe, the safety risk is high. In this paper, we introduce a novel framework that quantifies the penalty due to the unawareness of a potentially dangerous situation. This situation-unaware penalty function depends on two key factors: the Age of Information (AoI) and the observed signal value. For optimal estimators, we provide an information-theoretic bound of the penalty function that evaluates the fundamental performance limit of the system. To minimize the penalty, we study a pull-based multi-sensor, multi-channel transmission scheduling problem. Our analysis reveals that for optimal estimators, it is always beneficial to keep the channels busy. Due to communication resource constraints, the scheduling problem can be modelled as a Restless Multi-armed Bandit (RMAB) problem. By utilizing relaxation and Lagrangian decomposition of the RMAB, we provide a low-complexity scheduling algorithm which is asymptotically optimal. Our results hold for both reliable and unreliable channels. Numerical evidence shows that our scheduling policy can achieve up to 100 times performance gain over periodic updating and up to 10 times over randomized policy.more » « less
-
null (Ed.)We study how to schedule data sources in a wireless time-sensitive information system with multiple heterogeneous and unreliable channels to minimize the total expected Age-of-Information (AoI). Although one could formulate this problem as a discrete-time Markov Decision Process (MDP), such an approach suffers from the curse of dimensionality and lack of insights. For single-channel systems, prior studies have developed lower-complexity solutions based on the Whittle index. However, Whittle index has not been studied for systems with multiple heterogeneous channels, mainly because indexability is not well defined when there are multiple dual cost values, one for each channel. To overcome this difficulty, we introduce new notions of partial indexability and partial index, which are defined with respect to one channel's cost, given all other channels' costs. We then combine the ideas of partial indices and max-weight matching to develop a Sum Weighted Index Matching (SWIM) policy, which iteratively updates the dual costs and partial indices. The proposed policy is shown to be asymptotically optimal in minimizing the total expected AoI, under a technical condition on a global attractor property. Extensive performance simulations demonstrate that the proposed policy offers significant gains over conventional approaches by achieving a near-optimal AoI. Further, the notion of partial index is of independent interest and could be useful for other problems with multiple heterogeneous resources.more » « less
-
null (Ed.)We study the deadline scheduling problem for multiple deferrable jobs that arrive in a random manner and are to be processed before individual deadlines. The processing of the jobs is subject to a time-varying limit on the total processing rate at each stage. We formulate the scheduling problem as a restless multi-armed bandit (RMAB) problem. Relaxing the scheduling problem into multiple independent single-arm scheduling problems, we define the Lagrangian priority value as the greatest tax under which it is optimal to activate the arm, and establish the asymptotic optimality of the proposed Lagrangian priority policy for large systems. Numerical results show that the proposed Lagrangian priority policy achieves 22%-49% higher average reward than the classical Whittle index policy (that does not take into account the processing rate limits).more » « less